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Abstract. The A1-Milnor number of an isolated algebraic singularity is a quadratic en-

richment of the classical Milnor number. In this paper, we study which symmetric bilin-

ear forms of small rank arise as A1-Milnor numbers. We show that every Grothendieck–
Witt class of rank at most 7 that arises as an EKL form also arises as an A1-Milnor

number. In general, however, not every EKL form arises as an A1-Milnor number of an

isolated singularity of a plane algebraic curve. We characterize the Grothendieck–Witt
classes of rank at most 8 that arise as A1-Milnor numbers of isolated singularities of

plane algebraic curves.

1. Introduction

The classical Milnor number [14] is an important invariant of an isolated singularity of a
complex algebraic hypersurface. The celebrated A1-homotopy theory of Morel and Voevod-
sky [15, 16] has allowed the generalization of many topological invariants. Specifically, the
classical Brouwer degrees and Milnor numbers over C have been generalized to maps over
an arbitrary field k. In this generalization, these invariants are no longer numbers, but are
now classes in the Grothendieck-Witt group GW (k) of symmetric bilinear forms over k.

Let F : An → An be a morphism with an isolated zero at the origin. Recent work of
Kass–Wickelgren [9] shows that deg0(F ), the local A1-Brouwer degree of F , is equal to an
EKL form, which is a Grothendieck–Witt class that was previously defined by Eisenbud–
Levine [5] and Khimshiashvili [7].

If a hypersurface V (f) is defined by f = 0 for some morphism f : An → A1, then the
gradient of f gives a map ∇f : An → An. Assume that 0 is an isolated singular point of
V (f). Then the A1-Milnor number (over an arbitrary field) of f : An → A1 is defined by

µA1

0 (f) = degA
1

0 (∇f)

the local A1-Brouwer degree of ∇f [9, p. 3]. This definition is consistent with the classical
case (over C), when the Milnor number of f at an isolated singularity agrees with the local

Brouwer degree of ∇f at that point. By Kass and Wickelgren [9], µA1

0 (f) is an EKL form.
This paper studies which EKL forms and GW-classes rise as A1-Milnor numbers of isolated
algebraic singularities.

Quick–Strand–Wilson [17] have classified which Grothendieck–Witt classes of rank at
most 7 are realized as EKL forms. In particular, not every Grothendieck–Witt class arises
as an EKL form. It is natural to ask whether every EKL form arises as an A1 Milnor
number of some such f . In other words, does every EKL form arise as the EKL form of
∇f for some f : An → A1? We answer this question in the affirmative for rank at most 7
by explicitly constructing trivariate polynomials that define hypersurface singularities that
have as A1-Milnor numbers all of the EKL forms found by [17].
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Theorem 3.3. Let k be a field of characteristic not 2, 3, 5, or 7 and let q ∈ GW(k) be a
class of rank ≤ 7. If q arises as an EKL form, then q is an A1-Milnor number for some
f : An → A1 with n ≤ 3.

In the work of Quick–Strand–Wilson, all the Grothendieck–Witt classes of rank at most
7 arise as EKL forms from morphisms A2 → A2. It is natural to ask the analogous question
for A1-Milnor numbers and whether Theorem 3.3 can be strengthened to require n ≤ 2.
However, this cannot occur. In Theorems 8.1, we show that there are A1-Milnor numbers
of ranks 4, 6, and 8 over Q and R that do not arise from bivariate polynomials f : A2 → A1.

The bulk of this paper is focused on finding all Grothendieck–Witt classes of rank at
most 8 that arise as A1-Milnor numbers of isolated singularities of plane algebraic curves.
In the case of ranks 1, 2, 3, 5, and 7, the examples of Section 3 show that all Grothendieck–
Witt classes that arise as EKL forms also arise as A1-Milnor numbers of isolated singularities
of plane algebraic curves. In subsequent sections, we thus restrict attention to ranks 4, 6,
and 8.

In Section 4, we give necessary background about Newton nondegeneracy. In Section 5, we
present some theorems concluded from studying A1-Milnor numbers in general. A result of
Quick–Strand–Wilson [17, Lemma 12] allows us to restrict attention to polynomials f(x, y)
that include terms xm and yn for sufficiently large m and n. Considering the Newton
diagram of such a polynomial, its Newton number gives a lower bound on the rank of its
A1-Milnor number. Moreover, Newton nondegeneracy implies equality. In Theorem 5.3, we
prove that A1-Milnor numbers are invariant under a change of variables corresponding to .
As a consequence, in Theorem 5.7, we show that, under suitable hypotheses, if a polynomial
is not Newton nondegenerate, then it has the same A1-Milnor number as a polynomial with
larger Newton number. This result allows us to restrict our attention to polynomials that
are Newton nondegenerate.

In Section 6, we turn our attention to cataloging the Newton diagrams that have Newton
number at most 8. It turns out that the hypotheses of Theorem 5.7 are always satisfied
for rank at most 8, thus allowing us to restrict attention to Newton nondegenerate poly-
nomials. These Newton diagrams determine the possible forms of polynomials that have
A1-Milnor number of rank at most 8. In Section 7, we directly compute the A1-Milnor num-
ber of all polynomials with such Newton diagrams. As a consequence, we can determine all
Grothendieck–Witt classes of rank at most 8 that arise as an A1-Milnor number of a plane
algebraic curves, as shown in Table 1.

In Section 8, we consider the special cases when k = Q or R. We prove that there is no
A1-Milnor number of an isolated singularity of a plane algebraic curve that has signature
(3, 1), (4, 2), or (5, 3). As there are EKL forms with each of these signatures, this shows that
not all EKL forms arise as A1-Milnor numbers of isolated singularities of plane algebraic
curves (Theorem 8.1).

In Section 9, we prove an analogue for A1-Milnor numbers of Quick–Strand–Wilson’s
reduction theorem [17, Theorem 15] for EKL forms, a result that may be of independent
interest to some readers. This result follows from an application of Theorem 5.3 on reducing
the number of variables in the function under consideration and preserving the A1-Milnor
number up to multiplication by a unit. Theorem 9.6 states that under some minor condition,

there exists g of few variables than f such that µA1

0 (f) and µA1

0 (g) are equivalent classes
up to a unit multiplication. Such techniques can also be seen in McKean’s calculation [13,
Lemma 5.7] of the local A1-Brouwer degrees of the intersection of two plane curves.
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Rank A1-Milnor numbers

1 ⟨a⟩
2 h
3 h+ ⟨a⟩
4 h+ ⟨3∆gA,A⟩
5 2h+ ⟨a⟩
6 2h+ ⟨−2, c⟩
7 3h+ ⟨a⟩
8 3h+ ⟨−2, c⟩

Table 1. Possible A1-Milnor numbers µA1

0 (f) for bivariate f . Here a and
c are allowed to take any nonzero value, and ∆g and A are as defined in
Section 7.2.

2. Preliminaries

In this section, we review some facts about A1-Milnor numbers and A1-Brouwer degrees.
We follow the approach of Kass and Wickelgren [9], which computes EKL forms over a
localized algebra. This differs from the alternative approach taken in [3], which instead uses
saturation and computes Bézoutian bilinear forms.

Let k be a field and let Ank denote affine n-space over k. For an algebraic set X ⊆ An,
a map f : X → A1 is a morphism (or equivalently a regular map) if f is a restriction of a
polynomial function in n variables (i.e. f is a regular function on X). When X = An, one
can assume that f is given by a polynomial function in n variables over k (cf. Eisenbud [4,
Section 1.6, p. 36]). Let f ∈ k[x1, . . . , xn]. The hypersurface V (f) is the solution set of
f = 0 in An. A closed point p on V (f) is a singular point if fxi(p) = 0 for all i ∈ [n]. The
set Sing(f) is the set of singular points of V (f), also referred to as the singularities of V (f),
and the elements of V (f)\Sing(f) are the regular points of V (f). An isolated singularity of
V (f) is a closed point p ∈ Sing(f) such that there is a neighborhood of p in V (f) in which p
is the only singularity. Algebraically, this means that the localization k[x1, . . . , xn]p/(f,∇f)
is a finite dimensional k-vector space. The main case in this paper is when p = 0 ∈ Sing(f),
and we write that f has an isolated singularity at the origin.

Let F : An → An be a morphism with an zero at the origin. Let m be the maximal
ideal (x1, . . . , xn), and let IF = (F1, . . . , Fn) be the ideal of k[x1, . . . , xn] generated by the
coordinate functions Fi of F . The algebra Q0(F ) is defined as (k[x1, . . . , xn]/IF )m, the
localization of the quotient ring at m. We say that F has an isolated zero at the origin if
Q0(F ) is a finite-dimensional k-vector space.

In the case of a morphism f : An → A1 with an isolated singularity at 0, we apply the
above construction to ∇f : An → An. If Q0(∇f) is a finite-dimensional vector space, the
Milnor number µ0(f) is defined to be dimkQ0(∇f). Otherwise, we say that µ0(f) = ∞.
When k = C, Milnor [14] proved that µ0(f) is finite by a topological argument.

The Milnor number µ0(f) can be defined over an arbitrary field k, but it is not necessarily
finite. When k has characteristic zero, Milnor [14, Problem 3, page 115] indicated an
algebraic proof for the finiteness of µ0(f). Another algebraic proof in the characteristic
zero setting follows from [8, Corollary 7.1.4, Theorem 7.1.5] (See also [6, Sections 2 and 3]
for a detailed discussion).
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However, if k has positive characteristic, the Milnor number is not necessarily finite. For
instance, f(x, y) = x2y + xy2 over a field k of characteristic 3 (see Hefez et.al. [6]) has an
isolated singularity at the origin but infinite Milnor number. However, if f satisfies the
additional condition of non-degeneracy (see Section 4), then µ0(f) is finite [11].Describe GW

ring/classes
with more help-
ful/precise details:
such as equiva-
lence, addition,
multiplication,
units...

The Grothendieck–Witt ring of a field is the group completion of the set of isometry
classes of nondegenerate symmetric bilinear forms, with addition given by direct sum and
multiplication given by the tensor product.

Given two symmetric bilinear forms βi : Vi × Vi → k for i = 1, 2, we can define their sum
and product:

(1)
(β1 ⊕ β2) : (V1 ⊕ V2)× (V1 ⊕ V2) → k

(β1 ⊗ β2) : (V1 ⊗ V2)× (V1 ⊗ V2) → k.

On Grammatrices, these operations are given by direct sum and tensor product, respectively.
If {x1, . . . , xn} is a basis of Q then the Gram matrix of a bilinear form ⟨ , ⟩ on Q is

defined to be the matrix whose i, j entry is given by ⟨xi, xj⟩. The hyperbolic form is the
symmetric bilinear form whose Gram matrix is

[
1 0
0 −1

]
; we denote the hyperbolic form by

h. For more details, see [12].
In A1-homotopy theory, there are quadratic enrichments of Milnor numbers and Brouwer

degrees. Morel [15, Corollary 1.24] constructs a canonical morphism

[An − {0},An − {0}]• → GW(k),

which defines the local A1-Brouwer degree degA
1

0 . The A1-Milnor number is then defined in
terms of the local A1-Brouwer degree as follows.

Definition 2.1. Suppose the hypersurface defined by f = 0 for f ∈ k[x1, . . . , xn] has an

isolated singularity at 0. The A1-Milnor number µA1

0 (f) of f at 0 is defined as

µA1

0 (f) = degA
1

0 (∇f).

The A1-Brouwer degree is a Grothendieck–Witt class given by the so-called EKL form,
as we will now explain. Eisenbud–Levine [5] and Khimshiashvili [7] independently defined a
symmetric bilinear form now known as an EKL form. It was shown by Kass–Wickelgren [9]
that the local A1-Brouwer degree at an isolated singularity of a morphism An → An coincides
with the corresponding EKL form of the morphism. Next we explain how to compute the
appropriate EKL form to find the local A1-Brouwer degree.

which showed that µ0(f) equals the local Brouwer degree of a hypersurface at the origin.
Given a map F : AnC → AnC with an isolated zero at 0, define a map S2n−1 → S2n−1 by

taking a small ball around 0 and mapping it by x 7→ F (x)
∥F (x)∥ . The local Brouwer degree of

F at x is then defined to be the ordinary Brouwer degree of this map.
Such a form, denoted w(F ), was originally constructed as a symmetric bilinear form for

a C∞-function F with an isolated zero [5, 7]. The classical local Brouwer degree of F is
recovered from the signature of w(F ) when F is a C∞ real-valued function, and from the
rank of w(FC) of the complexification FC when F is a real analytic function. The definition
of w(F ) remains valid when F is a polynomial function with coefficient in an arbitrary field.
Eisenbud asked if the Grothendieck–Witt class w(F ) can be identified with some degree in
algebraic topology, which Kass and Wickelgren [9] then answered by proving that w(F ) is
the local A1-Brouwer degree. This relationship provides a tractable way to compute local
A1-Brouwer degrees and hence A1-Milnor numbers.



CHARACTERIZATION OF A1-MILNOR NUMBERS OF SMALL RANK 5

Let Q be a k-algebra that is a commutative ring of Krull dimension zero. In this case,
Q can be viewed as a finite-dimensional vector space over k. The socle of Q is the sum
of all simple submodules of Q. Then Q is Gorenstein if and only if the socle of Q is a
principal ideal. The generator of the socle of a Gorenstein module, up to a unit, is called
the distinguished socle element.

In [5], a nonsingular linear functional φ : Q→ k defines a bilinear form by setting

⟨p, q⟩ = ⟨p, q⟩φ := φ(pq)

for any p, q ∈ Q. By [5, Proposition 3.1], such a functional is nonsingular if and only if it
is a generator of Q∗ := Homk(Q, k). The same proposition also states that the existence
of such a nonsingular functional is equivalent to Q∗ = Q, and this is equivalent to Q
being Gorenstein. Furthermore, [5, Proposition 3.5] proves that if ψ is also a nonsingular
functional such that φ(a)ψ(a) is a square in k for a fixed element a in the socle of Q, then
⟨ , ⟩φ = ⟨ , ⟩ψ. In other words, this bilinear form is, to certain extent, independent of the
choice of linear functional.

For Q = (k[x1, . . . , xn]/F )m, localized at the maximal ideal m = (x1, . . . , xn), one has
that E = det(Fi,j), where the Fi,j are polynomials for which Fi =

∑n
j=1 Fi,jxj in Q. Up

to a unit, E is independent of the choices of Fi,j . Kass and Wickelgren [9, Lemma 4] show,
with reference to [18, (4.7) Korollar], that the socle of Q is generated by E. Therefore Q
is Gorenstein, and if two linear functionals take the same value on E (or compatible values
stated in [5, Proposition 3.5] also as just described above), they define equivalent bilinear
forms. These equivalence relations provides a well-defined class in Grothendieck–Witt ring
of symmetric bilinear forms. The EKL form of F corresponds to a k-linear functional
φ : Q→ k for which φ(E) = 1.

Let JF denote the Jacobian matrix of F . It is also shown in [9] that E is equal to the
r ·det JF in Q, where r is the dimension of Q as a k-vector space. Hence, in the computations
in the following sections, we define a k-functional η by setting η(det JF ) = r = dimkQ. Note
that

φ(E)η(E) = φ(E)η(r · det JF ) = 1 · r · η(det JF ) = r2.

This shows that φ and η defines the same bilinear function. In particular, we can obtain the
EKL form by constructing the Grothendieck–Witt class using η. When finding an A1-Milnor
number, J∇f is the same as the Hessian matrix of f .

By fixing a basis for Q0(F ), ⟨ , ⟩ψ can be represented by a symmetric r× r matrix. The
equivalence relation resulting from the valid functionals allows us to view this bilinear form
as an equivalence class in the Grothendieck–Witt ring of bilinear forms which is called the
EKL form of F .

We now recall some basic results on symmetric bilinear forms that we will use in computa-
tions throughout the paper. For a symmetric matrix B, we let qB denote the corresponding
bilinear form.

Lemma 2.2. Let q be a symmetric bilinear form with the upper antitriangular block matrix
c11 c12 · · · c1,n−1 a
c12 0
... B

...
c1,n−1 0
a 0 · · · 0 0


with a ̸= 0 and B is (n− 2)× (n− 2) square matrix. Then q ∼= h+ qB.
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While Lemma 2.2 is similar to [2, Lemma 4.5] and [1, Proposition 5.2], it isn’t covered
by their hypothesis and we present a proof.

Proof. For all j satisfying 2 ≤ j ≤ n− 1, subtract c1j/a times the nth row from the jth row
and c1j/a times the nth column from the jth column. Then subtract c11/2a times the nth
row from the first row and c11/2a times the nth column from the first column. This gives
the matrix 

0 0 · · · 0 a
0 0
... B

...
0 0
a 0 · · · 0 0

.
Reordering rows and columns, this becomes

0 a 0 · · · 0
a 0 0 · · · 0
0 0
...

... B
0 0

. □

Repeatedly apply Lemma 2.2, we obtain the corollary proved in [10, Lemma 6].

Corollary 2.3. Let B be the upper anti-triangular matrix
∗ · · · ∗ a
... . .

.
. .
.

0

∗ . .
.

. .
. ...

a 0 · · · 0


with a constant term a ̸= 0 along the antidiagonal. Then

qB ∼=

{
m
2 h if m is even;
m−1
2 h+ ⟨a⟩ if m is odd.

Proof. Repeatedly apply Lemma 2.2. □

We now provide an explicit example that illustrates many aspects of this paper.

Example 2.4. Let f = (x+ y2)2 + xy3. The Jacobian ideal of f is given by

Jf = (fx, fy) = (2x+ 2y2 + y3, 4xy + 3xy2 + 4y3).

As fx and fy have no common zero, f has an isolated singularity at the origin. Hence
µ0(f) <∞.

We now find a basis for Q0(∇f) = (k[x, y]/Jf )(x,y). Using fx = 0, we substitute for x in

fy = 0 to obtain

Jf = (2x+ 2y2 + y3,−y4(10 + 3y)/2) = (2x+ 2y2 + y3, y4)

as an ideal in k[x, y](x,y), as 10+3y is a unit. Then, in Q0(∇f), x can be written in terms of

y, and 4y4 = 0. Thus B = {1, y, y2, y3} is a spanning set for Q0(∇f), and it can be shown
to be a basis. Thus µ0(f) = dimQ0(∇f) = 4.
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With the basis B, we now calculate the A1-Milnor number. The determinant of the
Hessian matrix Hf of f is

detHf = 8x+ 12xy + 8y2 − 24y3 − 9y4 = −40y3

in Q0(∇f) as y4 = 0 and x = −(2y2 + y3)/2. Since µ0(f) = 4, we define η(y3) = −1/10
and let η = 0 on the other basis elements of B. Then η(−40y3) = 4, as needed for the

construction of µA1

0 (f). The Gram matrix of µA1

0 (f) is then
η(1 · 1) η(1 · y) η(1 · y2) η(1 · y3)
η(y · 1) η(y · y) η(y · y2) η(y · y3)
η(y2 · 1) η(y2 · y) η(y2 · y2) η(y2 · y3)
η(y3 · 1) η(y3 · y) η(y3 · y2) η(y3 · y3)

 =


0 0 0 − 1

10
0 0 − 1

10 0
0 − 1

10 0 0
− 1

10 0 0 0

 .
By Corollary 2.3, we have µA1

0 (f) = 2h.

We conclude this section with the following lemma, which shows how the A1-Milnor
number of a singularity is affected by multiplying its defining polynomial by a constant.

Lemma 2.5. If f : An → A is a polynomial with isolated singularity of finite Milnor number
at the origin. If a is a nonzero constant, then

µA1

0 (af) =

{
µA1

0 (f) if n is even

⟨a⟩ · µA1

0 (f) if n is odd.

Proof. Let g = af . Then

Jg = (gx1
, . . . , gxn

) = (afx1
, . . . , afxn

) = (fx1
, . . . , fxn

) = Jf ,

and Q0(∇g) = Q0(∇f). Since Hg = aHf , we have detHg = an detHf . Defining ηg =
1
an ηf ,

we have

ηg(det Hg) =
1

an
ηf (a

n det Hf ) = ηf (det Hf ) = dimk Q0(∇f) = dimk Q0(∇g).

Thus the Gram matrix for g is 1
an times the one for f , and

µA1

0 (g) =
〈 1

an

〉
· µA1

0 (f) = ⟨an⟩ · µA1

0 (f).

Since ⟨an⟩ = ⟨1⟩ when n is even and ⟨an⟩ = ⟨a⟩ when n is odd, the result follows. □

3. All EKL forms of rank at most 7 arise as A1-Milnor numbers

Quick–Strand–Wilson [17] determine the Grothendieck–Witt classes of rank at most 7
which arise as EKL forms. These classes are shown in Table 2. In this section, we show
that all of these forms also arise as A1-Milnor numbers. We do this by explicitly calculating

µA1

0 (f) for families of polynomials f with isolated singularities at zero.
We first use a construction from [17] to show that many EKL forms arise as A1-Milnor

numbers for morphisms f : A1 → A1 with an isolated singularity at zero.

Example 3.1 (cf. [17, Lemma 5]). Let f(x) = 1
a(m+1)x

m+1. We have fx = 1
ax

m and

k[x]/(fx) is an m-dimensional vector space with basis {1, x, . . . , xm−1}. The Hessian de-
terminant is

(
m
a

)
xm−1, and we define η by η(xm−1) = a and η(xi) = 0 for all i ∈
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Rank EKL forms

1 ⟨a⟩
2 h
3 h+ ⟨a⟩
4 h+ ⟨a, b⟩
5 2h+ ⟨a⟩
6 2h+ ⟨a, b⟩
7 3h+ ⟨a⟩

Table 2. Possible EKL forms according to [17]. Here a and b are allowed
to take any nonzero values.

{0, 1, . . . ,m− 2}. The Gram matrix is an antidiagonal matrix with a’s along the antidiag-
onal, so, by Corollary 2.3,

µA1

0 (f) =

{(
m
2

)
h if m is even,(

m−1
2

)
h+ ⟨a⟩ if m is odd.

The next example constructs families of singularities for surfaces defined by f = 0 for
trivariate polynomials f .

Example 3.2. Assume a, b ̸= 0 and let m be an even integer ≥ 4. Consider the polynomial

f(x, y, z) = x2y − a

b(m− 1)
ym−1 − 1

4a
z2,

The Jacobian

Jf = (fx, fy, fz) =

(
2xy, x2 − a

b
ym−2, − 1

2a
z

)
.

shows that f has an isolated singularity at the origin. Let Q0 = Q0(∇f). Jf shows that
z = 0 and xy = 0 in Q0. Then xyk = 0 for k ≥ 1. Since xfy = 0 in Q0 and xym−2 = 0
as m ≥ 4, one has x3 = 0 in Q0. Similarly, yfy = 0 and x2y = 0 shows yk = 0 for
k ≥ m−1. Also, fy ∈ Jf gives x2 = a

b y
m−2. Hence, Q0 is spanned by the set of m elements:

{1, x, y, y2, . . . , ym−2}, which gives a m-dimensional basis for Q0. We will use the ordered
basis

B = {1, . . . , ym/2−1, x, ym/2, . . . , ym−2}

The Hessian determinant det Hf is given by∣∣∣∣∣∣
2y 2x 0

2x − (m−2)a
b ym−3 0

0 0 − 1
2a

∣∣∣∣∣∣ = m

b
ym−2.

Therefore we define η by η(ym−2) = b and η = 0 on the other elements of B. The Gram ma-
trix G is then the antidiagonal block matrix, with b’s and the matrix B on the antidiagonal,
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with

G =



b

0 . .
.

b
B

b

. .
.

0
b


, with B =

[
b 0
0 a

]

By applying Lemma 2.2 (m− 2)/2 times, we have µA1

0 (f) =
(
m−2
2

)
h+ ⟨a, b⟩.

Taken together, these examples show that every EKL form of rank at most 7 arises as an
A1-Milnor number.

Theorem 3.3. Let k be a field of characteristic not 2, 3, 5, or 7 and let q ∈ GW(k) be a
class of rank ≤ 7. If q arises as an EKL form, then q is an A1-Milnor number for some
f : An → A1 with n ≤ 3.

Proof. Table 2 gives the Grothendieck–Witt classes of rank at most 7 that arise as EKL
forms. Example 3.1 shows that every EKL form of rank 1, 2, 3, 5, and 7 arises as a A1-
Milnor number. Example 3.2 with m = 4 shows that every EKL form of rank 4 arises as an
A1-Milnor number. Example 3.2 with m = 6 shows that every EKL form of rank 6 arises
as an A1-Milnor number. □

Theorem 3.3 shows that, up to rank 7, all Grothendieck–Witt classes that arise as EKL
forms also arise as A1-Milnor numbers of isolated singularities defined by polynomials in
three or fewer variables. The construction in the following example can be used to show
that once a Grothendieck–Witt class arises from a polynomial with a certain number of
variables, then it also arises from polynomials with any larger number of variables.

Example 3.4. Given a polynomial g(x), define f(x, z) = g(x) + cz2, where c is a nonzero
constant, The A1-Milnor numbers of f and g are related by

µA1

0 (g) = ⟨2c⟩ · µA1

0 (f),

We will generalize this in Theorem 9.6.

Theorem 3.5. (a) Let m be a positive integer. If a Grothendieck–Witt class arises as the
A1-Milnor number of an isolated singularity of a polynomial in m variables, then,
for all n ≥ m, it also arises as the A1-Milnor number of a polynomial in n variables.

(b) Each EKL form of rank 1, 2, 3, 5, or 7 arises from a morphism f : A1 → A1.
(c) Each EKL form of rank 1, 2, 3, 5, or 7 arises from a morphism f : An → A1, for

every n ≥ 1.

Proof. Repeatedly applying the construction in Example 3.4 with c = 1/2 shows (a).
Table 2 gives the Grothendieck–Witt classes of ranks 1, 2, 3, 5, and 7 that arise as EKL

forms. Example 3.1 shows that each of these forms arises as the A1-Milnor number of a
univariate polynomial, showing (b).

Part (c) follows from parts (a) and (b). □

For the remainder of the paper, we study which Grothendieck–Witt classes of arise as
A1-Milnor numbers of isolated singularities defined by single or two-variable (bivariate)
polynomials. The following proposition generalizes Example 3.1 to determine the A1-Milnor
number when f is a single-variable function with an isolated singularity at zero.
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Proposition 3.6. Let f =
∑m
i=d aix

i ∈ k[x] with ad ̸= 0 be a polynomial such that f : A1 →
A1 has an isolated singularity at zero. Then d ≥ 2, µ0(f) = d− 1, and

(a) If d− 1 is even, then the A1-Milnor number is
(
d−1
2

)
h.

(b) If d− 1 is odd, then the A1-Milnor number is
(
d−2
2

)
h+ ⟨a⟩ for some a.

Proof. We have fx = xd−1(dad +
∑m
i=d+1 iaix

i−d). Since dad ̸= 0, in the local ring

k[x](x), the second factor is a unit. Thus xd−1 = 0 in Q0(∇f) and Q0(∇f) ∼= k[x]/(xd−1)

and B = {1, x, . . . , xd−2} is a basis. Since xk = 0 in Q0(∇f) for k > d − 2, we have
detHf = d(d − 1)adx

d−2 in Q0(∇f). Then η is defined by η(xd−2) = 1/(dad), and η = 0
on the other basis elements in B. With the ordering given with B, the Gram matrix is
an anti-diagonal matrix with the entries 1/(dad) along the diagonal. By Corollary 2.3, the
proposition follows. □

As a consequence of Proposition 3.6, the only Grothendieck–Witt classes of ranks 4,
6, and 8 that arise as A1-Milnor numbers of isolated singularities defined by univariate
polynomials are 2h, 3h, and 4h. It remains to consider which forms of ranks 4, 6, and
8 arise as A1-Milnor numbers of isolated singularities of plane algebraic curves, a question
which we study in the subsequent sections of this paper.

4. Newton diagrams, Newton nondegeneracy, and Kushnirenko’s bound

In this paper, one goal is to determine all Grothendieck–Witt classes of ranks 4, 6, and
8 that arise as A1-Milnor numbers of isolated singularities for a two-variable polynomial
f : A2 → A1. To accomplish this, we will use a lower bound for the Milnor number µ0(f)
given by the Newton number ν(f) for f . In this section, we provide the background about
Newton diagrams, Newton nondegeneracy, and Newton numbers that we need.

First, we recall the definition of a Newton diagram as given in [20]. To a bivariate
polynomial f =

∑
i ami,ni

xmiyni in the variables x and y, with each ami,ni
̸= 0, we can

associate the collection of points (mi, ni) in the plane. The Newton polyhedron Γ+(f) of the
polynomial f is the convex hull of the regions above and to the right of the marked points
(mi, ni). Its boundary is made up of straight line segments or rays. The union of the line
segments and those rays not on a coordinate axis, form the Newton diagram Γ(f) of f . We
say that Γ(f) and f are convenient if Γ(f) has a vertex on each coordinate axis. When f
is convenient, we define Γ−(f) to be the region enclosed by the coordinate axes and Γ(f).
We have Γ(f) = Γ+(f) ∩ Γ−(f).

Let E be an edge of ν(f). To E, we define an associated polynomial ϕE(f) ∈ k[T ]. We
denote the vertices on E as (ri, si), where

(ri, si) = (r0, s0) + i(a, b), for 0 ≤ i ≤ t,

for some relatively prime integers a, b. We define the polynomial ϕE(T ) by ϕE(T ) =∑t
i=0 ari,siT

i where ari,si are the (possibly zero) coefficients of f .
A polynomial f is said to be Newton non-degenerate if its Newton diagram Γ(f) is

convenient and, for all edges E of Γ(f), the polynomial ϕE(T ) has distinct roots. Note that
if there are no interior lattice points on E, then ϕE(T ) = T t + a for some t ≥ 1 and a ̸= 0.
As k has characteristic zero, the roots of ϕE(t) are distinct. Hence, we have the following
criterion:

Lemma 4.1. Assume char k = 0 and f is a convenient polynomial. If the edges of Γ(f) do
not contain an interior lattice point, then f is Newton non-degenerate.
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We now state a result that polynomials that agree up to terms of a certain order have
isometric A1-Milnor numbers. Let P0 be the local ring

P0 = k[x1, . . . , xn](x1,...,xn)

Lemma 4.2 ([9, 17]). Let f : An → A be a map with an isolated singularity at the origin
and µ0(f) = N . If the map g : An → A satisfies f − g ∈ (x1, . . . , xn)

N+2 in P0 then

(a) The ideals
(
∂f
∂x1

, . . . , ∂f∂xn

)
and

(
∂g
∂x1

, . . . , ∂g
∂xn

)
are equal in P0;

(b) Q0(∇f) = Q0(∇g); and
(c) µA1

0 (f) = µA1

0 (g).

Proof. This follows from the proof of [9, Lemma 17], as explained in the proof of [17,

Lemma 12]. Since f − g ∈ (x1, . . . , xn)
N+2, we have that ∂f

∂xi
− ∂g

∂xi
∈ (x1, . . . , xn)

N+1.

Then, by [17, Lemma 12], (i) and (ii) are true. The same lemma shows that the EKL

formes of
(
∂f
∂x1

, . . . , ∂f∂xn

)
and

(
∂g
∂x1

, . . . , ∂g
∂xn

)
are equal. As this is the definition of the

A1-Milnor number, µA1

0 (f) = µA1

0 (g). □

Lemma 4.2 shows that modifying monomial terms in f with total degree at least N + 2
changes neither the Milnor algebra Q0(∇f) nor µ0(f). Hence, we can safely ignore all
monomial terms with total degree at least N + 2. Note that since the Milnor number is
finite, the modified f still has an isolated singularity. Hence, we only need to consider
polynomials f with the following form:

f =
∑
i,j

1≤i+j≤N+1

ai,jx
iyj .

If such a polynomial is not convenient, we can use the same lemma to add on xN+2 or
yN+2 without changing the A1-Milnor number. Thus it suffices to only consider (convenient)
polynomials of the following form:∑

i,j
1≤i+j≤N+1

ai,jx
iyj + xN+2 + yN+2.

Finally, a useful result for our calculations of A1-Milnor numbers follows immediately from
Quick, Strand, and Wilson [17]. This lemma enables us to start with a finite spanning set
to calculate Q0(∇f).

Lemma 4.3. [17, Lemma 10?] Let f : An → A1 be a map with an isolated zero at 0, and

assume µ0(f) = N ≥ 1. Let I be the ideal
(
∂f
∂x1

, . . . , ∂f∂xn

)
in P0 = k[x1, . . . , xn](x1,...,xn).

Then (x1, . . . , xn)
N ⊆ I.

Proof. This follows immediately from [17, Lemma 10] as our Q0(∇f) is the same as their
Q0(f). □

We now explain how to bound the Milnor number of an isolated algebraic singularity in
terms of the Newton diagram. Let f ∈ k[x, y] be a convenient polynomial, let A be the
area between the Newton diagram and the axes, and let m (resp. n) is the length of the
projection of the Newton diagram to the x (resp. y) axis. When f is convenient, the Newton
number of f , denoted ν(f), is given by ν(f) = 2A−m− n+ 1. When f is not convenient,
we define ν(f) := supm∈N ν(f + xm + yn).

Kushnirenko showed that the Newton number gives a lower bound on the Milnor number
of an isolated algebraic singularity.
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Lemma 4.4 (Kushnirenko [11]). Let k be a field. Assume f ∈ k[x, y] has an isolated
singularity at 0. Then

µ0(f) ≥ ν(f).

Moreover, this bound is an equality when f is convenient and Newton non-degenerate.

Remark 4.5. Kushnirenko proved this result for formal power series. The Milnor number
is an invariant of Q0(∇f), which is the localization of k[x, y]/(∇f) and is isomorphic to
k[[x, y]]/(∇f), the quotient of the formal power series ring as used in [11].

Example 4.6. Let f = (x+ y2)2 + xy3, as in Example 2.4.
We can use Lemma 4.4 to get a lower bound on dimkQ0(∇f). Since f = (x+y2)2+xy3 =

x2 + 2xy2 + xy3 + y4, we plot points (2, 0), (1, 2), (1, 3), and (0, 4) corresponding to the
exponents of the monomials in f . The Newton diagram Γ(f) of f consists of edge(s) of the
convex hull of the four points which is visible from the origin. In this case Γ(f) is the line
segment connecting (2, 0) and (0, 4).

Here ν(f) = 8−2−4+1 = 3, which is indeed a lower bound for µ0(f) = 4. The terms of
f corresponding to lattice points on the Newton diagram Γ(f) are x2+2xy2+y4 = (x+y)2

which has repeated roots. Therefore f is not Newton non-degenerate, contributing to the
Newton number ν(f) = 3 falling short of the Milnor number µ0(f) = 4.

In Section 6, we will use Lemma 4.4 to find all isolated singularities whose Milnor number
is at most 8.

5. Change of variables

Before proceeding to find all Grothendieck–Witt classes of rank at most 8 that arise as
A1-Milnor numbers of isolated singularities determined by bivariate polynomials, we show
in this section that A1-Milnor numbers are preserved under certain changes of variables
and that, if a polynomial is degenerate, we can often find another polynomial with larger
Newton number but the same A1-Milnor number.

5.1. A1-Milnor number is preserved under invertible change of variables. We
define a morphism ϕ : An → Am to be given by ϕ = (ϕ1, . . . , ϕm), with ϕi ∈ k[x1, . . . xn].

Recall that the Jacobian Jϕ is the m × n matrix with (Jϕ)ij = ∂ϕi

∂xj
. Lemmas 5.1 and 5.2

are well-known, but we provide the proofs for completeness.

Lemma 5.1. Let f : An → A be a morphism, and let ϕ : An → An be an invertible mor-
phism. If g = f ◦ ϕ, then

(fx1
(ϕ(x)), . . . , fxn

(ϕ(x))) = (gx1
(x), . . . , gxn

(x))

as ideals in k[x1, . . . , xn].

Proof. By the chain rule, gxi
(x) =

∑n
j=1 fxj

(ϕ(x))
∂ϕj

∂xi
(x). Thus

(gx1
(x), . . . , gxn

(x)) ⊆ (fx1
(ϕ(x)), . . . , fxn

(ϕ(x))).

Since ϕ is invertible, we have f = g ◦ ϕ−1. The chain rule gives (fx1(x), . . . , fxn(x)) ⊆
(gx1

(ϕ−1(x))), . . . , gxn
(ϕ−1(x))). Substituting ϕ(x) for x, we obtain the reverse inclusion

and the lemma is proved. □

Let ϕ : An → An, ϕ = (ϕi) be an isomorphism. Then ϕ induces a ring isomorphism
Φ: A1 → A1, defined by Φ(xi) = ϕi(x). For any h ∈ A1, we have Φ(h(x)) = h(ϕ(x)).
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Now let f : An → A1 be a morphism with an isolated singularity at the origin. Let
ϕ : An → An be an invertible morphism and let g = f ◦ ϕ. Then by Lemma 5.1, Φ induces
a well-defined ring homomorphism Φ: Q0(∇f) → Q0(∇g).

Lemma 5.2. Let f : An → A be a morphism with an isolated singularity at the origin. Let
ϕ : An → An be an invertible morphism, and let g = f ◦ ϕ. Then Φ̄ : Q0(∇f) → Q0(∇g) is
a ring isomorphism.

Proof. Let ϕ−1 be the inverse to ϕ. Then it defines a ring isomorphism Φ−1 : A1 → A1 that
is the inverse to Φ. By Lemma 5.1, it induces Φ−1 : Q0(∇g) → Q0(∇f). Since Φ, Φ−1 are

inverses, Φ−1 = Φ
−1

, and Φ is an isomorphism. □

A corollary of Lemma 5.2 is that for the classical Milnor number, µ0(f) = µ0(g). We
now show that the A1-Milnor number is invariant under an invertible change of variables.

Theorem 5.3. Let f : An → A be a morphism with an isolated singularity at the origin.
Let ϕ : An → An be an invertible morphism with ϕ(0) = 0 and let g = f ◦ϕ. Then Q0(∇f) ∼=
Q0(∇g) and µA1

0 (g) = µA1

0 (f).

Proof. We will show that µA1

0 (g) = µA1

0 (f), by following the construction of the A1-Milnor
number and comparing the Hessian Hf , map ηf , and Gram matrix for f with those of g.
By the chain rule,

Hg(x)i,j =
(
JTϕ (x)Hf (ϕ(x))Jϕ(x)

)
i,j

+

n∑
k=1

∂f

∂xk
(ϕ(x))

(
∂2ϕk
∂xi∂xj

)
(x).

Now ∂f
∂xk

(ϕ(x)) = fxk
(ϕ(x)) = 0 in Q0(∇g), for all k ∈ [n]. Thus, in Q0(∇g), we have

Hg(x) = JTϕ (x)Hf (ϕ(x))Jϕ(x).

Taking determinants,

detHg(x) = detJϕ(x)
2 detHf (ϕ(x)).

Applying Φ
−1

, we find

detHg(ϕ
−1(x)) = detJϕ(ϕ

−1(x))2 detHf (x).

in Q0(∇f). Since ϕ is invertible, by the chain rule, the matrix Jϕ is invertible. Then the
determinant

D = det Jϕ(ϕ
−1(x))

is also invertible. Multiplying both sides of the above equation by D−2, we have that

D−2 detHg(ϕ
−1(x)) = detHf (x).

Now suppose we have a k-linear functional ηf : Q0(∇f) → k with ηf (detHf (x)) = µ0(f).
We define a map ηg : Q0(∇g) → k by

ηg(m) = ηf (D
−2Φ

−1
(m)) for m ∈ Q0(∇g).

This is a k-linear map as ηf and Φ−1 are k-linear. Now ηg is the desired map needed to
define µ0(g) as

ηg(det Hg(x)) = ηf (D
−2Φ

−1
(det Hg(x)))

= ηf (D
−2 detHg(ϕ

−1(x)))

= ηf (det Hf (x)) = µ0(f) = µ0(g).
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(0, n)

(1, d)

v

v′

(m, 0)

(0, d+m)

Figure 1. Possible Newton diagram Γ(f) in Lemma 5.5

Using the k-linear maps ηf , ηg, we now show that we can choose bases such that the

Gram matrices of µA1

0 (g) and µA1

0 (f) are the same. It then follows that µA1

0 (f) = µA1

0 (g).
Let B = {mℓ(x)}rℓ=1 be a basis of Q0(∇g). Since D is a unit, by Lemma 5.2, it follows that
B′ = {D−1Φ−1(mℓ(x))}rℓ=1 is a basis of Q0(∇f). Then

ηf (D
−1Φ−1(mi(x))D

−1Φ−1(mj(x))) = ηf (D
−2Φ−1(mi(x)mj(x)))

= ηg(mi(x)mj(x))

for all i, j ∈ [r]. Thus the (i, j) entry of the Gram matrix of µA1

0 (f) with respect to the basis

B is the same as the (i, j) entry of the Gram matrix of µA1

0 (g) with respect to the basis B′.

Then µA1

0 (f) = µA1

0 (g). □

5.2. Change of variables and Newton number. In this section, we explicitly show how,
in some specific cases, one can use a change of variables to increase the Newton number
without changing the A1-Milnor number.

Lemma 5.4. Let f(x, y) = xbyc ∈ k[x, y] for non-negative integers b, c. Define g(X,Y ) ∈
k[X,Y ] by g(X,Y ) = f(x, y), where X = x + aym, Y = y, for some m ≥ 1. Then XbY c

is a non-zero monomial in g(X,Y ) and all the non-zero monomials lie on the line segment
from (b, c) to (0, c+ bm).

Proof. As xbyc = (X−aY m)bY c =
∑b
i=0

(
b
i

)
aiXb−iY c+mi, each monomial XsY t in g(X,Y )

has (s, t) = (b− i, c+ im) for some i ≥ 0. □

We recall that if Γ(f) is the Newton diagram for f , then Γ+(f) is the set of all lattice
points (x, y) lying on or above Γ(f), and Γ−(f) is the set of lattice points (x, y) lying on
or below Γ(f) with x, y ≥ 0.

Lemma 5.5. Let f(x, y) ∈ k[x, y] be convenient. Let e be an edge of Γ(f) containing
P = (1, d). Assume the slope of e is ≥ −m, for some positive integer m. Define g(X,Y ) ∈
k[X,Y ] by g(x+ aym, y) = f(x, y). If (b, c) ∈ Γ+(g), then either

(a) (b, c) is in Γ+(f); or
(b) b = 0 and c ≥ d+m.

Moreover, if P ∈ Γ(f) is a point on an edge e′ with slope greater than the slope of e, then
P ∈ Γ(g).
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Proof. Let (b, c) ∈ Γ+(g), then by Lemma 5.4, (b, c) = (r, s) − t(1,−m), for some (r, s) ∈
Γ+(f) and some 0 ≤ t ≤ r. If t = 0, (1) is proved. Hence r ≥ 1. Now, by the convexity
of the Newton polyhedron Γ+(f), the slopes of the edges are negative and increase as their
x-coordinates increase. Hence all the edges in Γ(f) with x ≥ 1 have slopes ≥ −m. Thus,
since (r, s) ∈ Γ+(f), (b, c) ∈ Γ+(f) or b = 0. If b = 0 and c < d+m, then the line segment
from (1, d) to (r, s) would have slope < −m, and thus (r, s) ̸∈ Γ+(f) by definition of Γ(f).
Hence c ≥ d+m. Finally, we note that if P is a point on an edge e′ with slope greater than
that of e, then by Lemma 5.4, P ∈ Γ(g) as there are no points P + t(1,−m) in Γ+(f), with
t > 0. □

Lemma 5.6. Let f , g ∈ k[x, y] be convenient polynomials whose Newton diagrams share
the same points on the coordinate axes. If Γ−(f) ⊊ Γ−(g), then ν(g) > ν(f).

Proof. Let (m, 0), (0, n) be the points on the coordinate axes for Γ(f), Γ(g). As Γ−(f) ⊊
Γ−(g), Af < Ag. Then

ν(f) = 2Af −m− n+ 1 < 2Ag −m− n+ 1 = ν(g). □

We now prove the main result of this subsection. For a bivariate polynomial f , we recall
that if e is an edge of the Newton diagram Γ(f), then fe is the part of f consisting of the
monomials that lie on e.

Theorem 5.7. Let f ∈ k[x, y] be convenient and have an isolated singularity at the origin.
Let e be a degenerate edge of Γ(f) and assume fe has x + aym as a repeated factor. If
P = (1, d) is a point on e, then there exists another convenient polynomial g ∈ k[x, y] with

an isolated singularity at the origin such that µA1

0 (g) = µA1

0 (f) and ν(g) > ν(f).

Proof. Let ϕ(x, y) = (x−aym, y) and let g = f ◦ϕ. Then by Theorem 5.3, µA1

0 (g) = µA1

0 (f).
Let (n, 0) ∈ Γ(f). Then by Lemma 5.4, (n, 0) ∈ Γ(g). By Lemma 4.2, we can add a
sufficiently high power of yN , chosen so that N > d + m to g without changing the A1-
Milnor number. Hence, we can assume that g is convenient.

We now show that ν(g) > ν(f) by creating a polynomial h with the property that
ν(h) = ν(f) and ν(h) < ν(g). First, let M be the smallest positive integer such that the
monomial term YM in g(X,Y ) has a nonzero coefficient. By Lemma 5.4, M ≥ d+m. We
now define a new polynomial h(x, y) obtained from f(x, y) by deleting all the monomial
terms yr in f(x, y), for r < M and letting the coefficient of yM be 1. Since (1, k) is a
point on both Γ(f), Γ(h), the formula for the Newton number shows that ν(h), ν(f) are
independent of the choice of point (0, r) on their Newton diagram. Hence, ν(f) = ν(h).

We now show ν(h) < ν(g) to prove the theorem. By assumption fe(x, y) is a multiple of
(x+ aym)s = Xs, for some s ≥ 2. By Lemma 5.4, all vertices in Γ(g) lying on the extension
of e to the y-axis must come from a non-zero monomial XuY v in g(X,Y ) = fe(X−aY m, Y ),
which is a multiple of Xs. Hence neither (1, d) nor (0, d+m) is in Γ(g). As a consequence,
Γ−(h) ⊊ Γ−(g). As both g, h are convenient and their Newton diagrams contain the same
points (n, 0), (0,M) on the coordinate axes, by Lemma 5.6, ν(g) > ν(h). This proves the
theorem. □

When the the horizontal change of the degenerate edge is at most 3, the conclusion of
the theorem applies.

Corollary 5.8. Let f be a convenient bivariate polynomial with isolated singularity at the
origin. Assume that e is a degenerate edge in Γ(f) and the endpoints of e are given by
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(a0, b0), (a1, b1) with a1 > a0 If a1 − a0 ≤ 3, then exists a convenient polynomial g with an

isolated singularity at the origin such that µA1

0 (g) = µA1

0 (f) and ν(g) > ν(f).

Proof. The endpoint condition on e ensures that the polynomial fe(x, y) is of the form
xa0yb1g(x, y), where g(x, y) = xa1−a0 + · · · + yb0−b1 . The degeneracy condition shows that
g(x, y) has a repeated factor of the form xs+aym. Since deg g ≤ 3, the repeated factor is of
the form x+ aym. Hence Theorem 5.7 can be applied to increase the Newton number. □

Example 5.9. Let f = (x + y2)2 + xy3. In Example 2.4, we calculated µA1

0 (f) = 2h.
Now f is Newton degenerate as its Newton diagram is the edge E from (0, 4) to (2, 0) with
interior vertex (1, 2). As the associated polynomial ϕE(T ) = (T + 1)2 has repeated roots,
f is Newton degenerate. The Newton number ν(f) is 2(4)− 4− 2 + 1 = 3 and one has the
strict inequality µ0(f) > ν(f).

We now show how to apply a linear change of variables to transform f into another
polynomial g which is Newton non-degenerate but has the same A1-Milnor number. Kush-
nirenko’s theorem applied to g will then give µ0(g) = ν(g).

After the change of variables x1 = x+ y2 and y1 = y, we obtain

g(x1, y1) = x21 + x1y
3
1 − y51 = f(x, y)

By Theorem 5.3, µA1

0 (f) = µA1

0 (g). Moreover, as the Newton diagram of g is the edge from
(2, 0) to (0, 5), it is convenient and Newton non-degenerate. Kushnirenko’s Theorem 4.4
shows that µ0(g) = 10− 2− 5 + 1 = 4. Hence µ0(f) = 4, as calculated above.

6. Classification of Newton diagrams with Newton number at most 8

Let f be a bivariate convenient polynomial with an isolated singularity at 0. In this
section, we determine all such f with Newton number ν(f) ≤ 8. Because µ0(f) ≥ ν(f)
by Lemma 4.4, we thus obtain a lower bound on µ0(f). In Section 7, we use this bound to
classify all Grothendieck–Witt classes of rank at most 8 that can arise as A1-Milnor number
of bivariate polynomial f .

Let f be a bivariate convenient polynomial in the variables x and y. Let m (resp. n) be
the smallest integer for which the coefficient of xm (resp. yn) in f is nonzero. Recall that
A(f) is the area between the Newton diagram Γ(f) and the axes, and

ν(f) = 2A(f)−m− n+ 1.

Let d be the number of edges (with different slopes) in Γ(f). An edge comprised of multiple
line segments is considered a single edge.

As we are focused on polynomials with Milnor number at most 8, the following lemma
allows us to restrict attention to cases where Γ(f) has at most three edges.

Lemma 6.1. Let f be a bivariate convenient polynomial with an isolated singularity at 0.
Let Γ(f) have d edges. If d ≥ 4, then ν(f) ≥ 9.

Proof. Suppose d ≥ 4, and let (0, n), (α1, β1), . . . , (αd−1, βd−1), and (m, 0), be the vertices
at the ends of the d edges, as shown in Figure 2. We have α1, βd−1 ≥ 1, and moreover
αi, βd−i ≥ i for all i ∈ [d − 1]. Thus αi + βi ≥ d ≥ 4 for all i ∈ [d − 1]. First we claim
and justify that the shaded region in Figure 2 is contained in the region between Γ(f) and
the axes: From a point (i, j) between adjacent vertices on the Newton diagram Γ(f), if we
move in the southeast (respectively northwest) direction, then the y-coordinate (respectively
x-coordinate) must decrease by at least 1. This implies the maximum number of edges in
Γ(f) which contains a vertex with coordinate (i, j) is i + j. So the Newton diagram Γ(f)
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(0, n)

(α1, β1)

(α2, β2)

(αd−1, βd−1)

(m, 0)

(1, 3)

(3, 1)
4

n
2

m
2

Figure 2. Case when Γ(f) has d ≥ 4 edges.

with four edges can only contain vertices (i, j) with i + j ≥ 4. This means the vertices of
Γ(f) are outside the triangle with vertices at (0, 0), (3, 0), and (0, 3). Since (m, 0) is the
vertex of Γ(f) on the x-axis which is closest to the origin, there is no vertex of Γ(f) along
the x-axis to the left of (m, 0). Therefore the triangle with vertices at (4, 0), (3, 1), and
(m, 0) is contained within the region in the first quadrant between Γ(f) and the two axes.
Similarly, we can conclude that the triangle with vertices at (0, 4), (1, 3), and (0, n) is also
within the region and complete the argument for the claim. As the area of the shaded region
is 4 + m+n

2 , we have A(f) ≥ 4 + m+n
2 . Hence ν(f) = 2A(f)−m− n+ 1 ≥ 8 + 1 = 9. □

As a result of Lemma 6.1, it suffices to consider the cases when Γ(f) has one, two, or
three edges. The next lemma gives the possibilities when Γ(f) has one edge.

Lemma 6.2. Let f be a bivariate, convenient polynomial with an isolated singularity at 0,
and ν(f) ≤ 8. If Γ(f) consists of a single edge, then the edge has endpoints {(m, 0), (n, 0)},
or by symmetry {(n, 0), (m, 0)}, with (m,n) given by

ν(f) 1 2 3 4 5 6 7 8
(m,n) (2, 2) (2, 3) (2, 4) (2, 5), (2, 6) (2, 7), (2, 8) (2, 9),

(3, 3) (3, 4) (3, 5)

Proof. Let the edge of Γ(f) have terminal vertices (0, n), (m, 0). Then A(f) = nm/2 and
ν(f) = (m−1)(n−1). By symmetry, assume that m ≤ n. For ν(f) ≤ 8, the possible (m,n)
are given by the table. □

The next lemma gives the possibilities when Γ(f) has two edges.

Lemma 6.3. Let f be a bivariate, convenient polynomial with an isolated singularity at 0
and ν(f) ≤ 8. If Γ(f) consists of two edges, then the edges have endpoints {(0, n), (α, β),
(m, 0)}, or by symmetry {(n, 0), (β, α), (0,m)}, with α, β,m, n as follows:
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ν(f) Possible α, β,m, n
1 (α, β) = (1, 1), with m,n ≥ 2
2 ∅
3 (α, β) = (2, 1), with m ≥ 5 and n = 2
4 (α, β) = (2, 1), with m ≥ 4 and n = 3
5 (α, β) = (2, 1), with m ≥ 3 and n = 4

(α, β) = (3, 1), with m ≥ 7 and n = 2
6 (α, β) = (2, 1), with m ≥ 3 and n = 5
7 (α, β) = (2, 1), with m ≥ 3 and n = 6

(α, β) = (3, 1), with m ≥ 5 and n = 3
(α, β) = (4, 1), with m ≥ 9 and n = 2

8 (α, β) = (2, 1), with m ≥ 3 and n = 7

(0, n)

(α, β)

(m, 0)

αn
2

βm
2

Figure 3. Γ(f) with two edges

Proof. Let the terminal vertices of the two edges of Γ(f) be (0, n), (α, β), (m, 0), where
0 < β < n and 0 < α < m. Computing areas as shown in Figure 3, we have that

ν(f) = m(β − 1) + n(α− 1) + 1.

For each value of ν(f) ≤ 8, we determine the corresponding Newton diagrams. If α, β ≥ 2,
then m,n ≥ 3, and moreover either m ≥ 5 or n ≥ 5 in order for (α, β) to be a vertex of
the Newton diagram. Thus we would have that ν(f) = m(β − 1) + n(α − 1) + 1 ≥ 9. By
symmetry, assume α ≥ β. In finding polynomials with ν(f) ≤ 8, we can therefore assume
β = 1, in which case ν(f) = n(α − 1) + 1. As the right side of this equation is positive,
ν(f) = 0 is not possible.

• ν(f) = 1: We must have α = 1, in which case there are no further restrictions on
m and n.

• ν(f) = 2: Then n(α− 1) = 1. As n ≥ 2, there are no solutions.
• ν(f) = 3: Then n(α− 1) = 2. As n ≥ 2, we must have α = 2 and n = 2. This gives
two edges exactly when m ≥ 5.

• ν(f) = 4: Then n(α− 1) = 3. As n ≥ 2, we must have α = 2 and n = 3. This gives
two edges exactly when m ≥ 4.

• ν(f) = 5: Then n(α − 1) = 4, which forces either (n, α) = (4, 2) or (n, α) = (2, 3).
In the first case, this gives two edges exactly when m ≥ 3. In the second case, it
gives two edges exactly when m ≥ 7.
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• ν(f) = 6: Then n(α − 1) = 5, which forces (n, α) = (5, 2). This gives two edges
exactly when m ≥ 3.

• ν(f) = 7: Then n(α − 1) = 6, which forces either (n, α) = (6, 2), (n, α) = (3, 3), or
(n, α) = (2, 4). In the first case, this gives two edges exactly when m ≥ 3. In the
second case, it gives two edges exactly when m ≥ 5. In the third case, it gives two
edges exactly when m ≥ 9.

• ν(f) = 8: Then n(α − 1) = 7. which forces (n, α) = (7, 2). This gives two edges
when m ≥ 3. □

The following lemma gives the possibilities when Γ(f) has three edges.

Lemma 6.4. Let f be a convenient bivariate polynomial with an isolated singularity at 0
and ν(f) ≤ 8. If Γ(f) consists of three edges, then ν(f) is 4, 6, or 8. Moreover, the edges of
Γ(f) have terminal vertices {(0, n), (α, β), (γ, δ), (m, 0)}, or by symmetry {(0,m), (δ, γ),
(β, α), (n, 0)}, with γ, δ, α, β,m, n as follows:

ν(f) Possible γ, δ, α, β,m, n
4 (γ, δ) = (2, 1) and (α, β) = (1, 2), with m,n ≥ 4
6 (γ, δ) = (2, 1) and (α, β) = (1, 3), with m ≥ 3 and n ≥ 6
8 (γ, δ) = (2, 1) and (α, β) = (1, 4), with m ≥ 3 and n ≥ 8.

(0, n)

(α, β)

(γ, δ)

(m, 0)

(γ−α)(β−δ)
2

α(β−δ)
2

δ(γ−α)
2

αn
2

δm
2

Figure 4. Γ(f) with three edges
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Proof. Let the three edges of Γ(f) have terminal vertices {(0, n), (α, β), (γ, δ), (m, 0)},
where 0 < δ < β < n and 0 < α < γ < m. Computing areas as shown in Figure 4, we have
that

(2) ν(f) = n(α− 1) +m(δ − 1) + α(β − δ) + δ(γ − α) + (γ − α)(β − δ) + 1.

If δ ≥ 2, this quantity can be at most 8 only if α = 1, m = 3, β = 3, and γ = 2. However,
this does not give a Newton diagram with three edges, so we conclude that we must have
δ = 1. Similarly, α = 1.

Under the assumption δ = α = 1, (2) simplifies to ν(f) = γβ. By symmetry, suppose
γ ≤ β. As γ, β ≥ 2, the only possibilities are ν(f) = 4 with γ = 2 and β = 2, ν(f) = 6
with γ = 2 and β = 3, and ν(f) = 8 with γ = 2 and β = 4. In the first of these cases, we
have three edges exactly when m,n ≥ 4. In the second case, we have three edges exactly
when m ≥ 3 and n ≥ 6. In the third case, we have three edges exactly when m ≥ 3 and
n ≥ 8. □

Having found all Newton diagrams with Newton number at most 8, we will use them
in the next section to find all Grothendieck–Witt classes of rank at most 8 that arise as
A1-Milnor numbers of isolated singularities of plane algebraic curves.

7. A1-Milnor numbers of rank at most 8 for bivariate f

• Important: Show that Kushnirenko’s definition of non-degenerate implies ∆ ̸= 0.
Should be put in Section 4, where we introduce non-degeneracy.

• ”Row reduction (2)” needs to specify the (2) in here? (done?)

Let f ∈ k[x, y] be a convenient, bivariate polynomial with an isolated singularity at zero. In

this section, we determine the A1-Milnor numbers µA1

0 (f) that can occur when µ0(f) ≤ 8.
By Theorem 3.5, all A1-Milnor numbers of ranks 1, 2, 3, 5, and 7 arise from a single variable
function f . Thus, we only need to consider the cases when µ0(f) = 4, 6, 8. In subsection 7.1,
we show that we can assume f is Newton nondegenerate. Then in section 7.2, we classify

all A1-Milnor numbers µA1

0 (f) that can occur for ranks 4, 6, 8 for bivariate f .

7.1. Reduction to Newton nondegenerate cases. The following theorem allows us to
restrict attention to Newton nondegenerate polynomials.

Theorem 7.1. Let f be a bivariate polynomial that is convenient but not Newton non-
degenerate. If ν(f) ≤ 8, then there is a bivariate convenient polynomial g such that

µA1

0 (g) = µA1

0 (f) and ν(g) > ν(f).

Proof. If a bivariate polynomial is convenient with Newton number at most 8, then it is of
one of the forms listed above. If it is Newton degenerate, by interchanging variables if
necessary, it has a degeneracy along an edge of the Newton diagram that passes through or
is incident to a point of the form (1, k). Moreover, in each case the repeated factor must be
of the form x+ ayα. Applying Theorem 5.7 then gives the result. □

Corollary 7.2. Let f be a bivariate convenient polynomial with an isolated singularity
at zero. If f is Newton-degenerate, then there exists a Newton-nondegenerate bivariate

convenient polynomial g with an isolated singularity at zero, and such that µA1

0 (f) = µA1

0 (g).

Proof. By Theorem 7.1, there exists a polynomial f1 with the same properties as f and
ν(f1) > ν(f). If f1 is Newton non-degenerate, then g = f1 is the desired polynomial.
If f1 is degenerate, then continuing this process, we obtain a sequence f1, f2, . . . , fℓ of
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polynomials, with the same properties as f , where f1, . . . , fℓ−1 are Newton-degenerate and
ν(f) < ν(f1) < · · · < ν(fℓ). If fℓ is Newton non-degenerate, then g = fℓ proves the corollary.
for ℓ = µ0(f)− ν(f) + 1, we have

ν(fℓ) ≥ ν(f) + ℓ = µ0(f) + 1 = µ0(fℓ) + 1

which contradicts µ0(fℓ) ≥ ν(fℓ). □

Corollary 7.2 shows that to find all A1-Milnor numbers of rank at most 8 coming from a
bivariate polynomial f , it suffices to consider Newton nondegenerate polynomials with rank
at most 8. By Theorem 3.5, it remains to determine the A1-Milnor numbers of ranks 4, 6, 8
that can occur for bivariate polynomials. In the following subsections, we determine the
A1-Milnor numbers that can occur for these ranks when f is bivariate.

7.2. Classification of A1-Milnor numbers in Ranks 4, 6, 8. In this subsection, we

classify the A1-Milnor numbers µA1

0 (f) that arise for a bivariate polynomial f : A2 → A2

with an isolated zero. By Corollary 7.2 and Lemma 4.2, we can assume f is Newton
nondegenerate and convenient.

In each case, we apply the following approach to compute µ0(f). Suppose f has Milnor
number µ0(f) = n. Since f is convenient and nondegenerate, ν(f) = n by Lemma 4.4.
Then from Section 6, we know the possible Newton diagrams of f with ν(f) = n, and thus
the possible monomial terms in f . We then compute a basis of Q0(∇f) and express all
monomials in terms of this basis. Using this information, we can calculate the A1-Milnor

numbers µA1

0 (f) that can arise.
To calculate Q0(∇f), we use the following method. By Lemma 4.3, if µ0(f) = n, then

Q0(∇f) is spanned by the monomials in the set

S = {monomials xiyj with 0 ≤ i+ j < n}

As the partial derivatives fx, fy generate the Jacobian ideal and are 0 in Q0(∇f), we have
the equations fx = 0, fy = 0 in Q0(∇f). Similarly, we have equations

(3) αfx = 0, αfy = 0

for all α ∈ S. We regard these equations as a system of linear equations in Q0(∇f), in the
monomials in S, and with coefficients in k. Row-reduction of this system gives a basis of
Q0(∇f) as a vector space over k and expressions of all α ∈ S in terms of the basis. We then

use this information to compute µA1

0 (f). Before doing the general cases, we illustrate the
method with an explicit example.

Example 7.3. We continue Example 5.9. Let g(x, y) = x2 + xy3 − y5. The Newton diagram
consists of the edge from (2, 0) to (0, 5). It is convenient and non-degenerate. As µ0(g) = 4,
we know that Q0 = Q0(∇g) is spanned by monomials with degree ≤ 3, namely the 10
monomials in

S = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3}.
Now gx = 2x + y3 and gy = 3xy2 − 5y4 are both 0 in Q0. Similarly, αgx = 0, αgy = 0,
for all α ∈ S. The equation xgx = 0 gives the equation 2x2 + xy3 = 0. Since it has degree
4, xy3 = 0 in Q0 and thus x2 = 0. There are a total of 20 equations in 10 unknowns
(corresponding to the elements of S). Solving this system of equations shows that

{1, y, y2, y3} is a basis of Q0.

Row-reduction shows that x = −y3/2, and that x2, xy, x3, x2y, xy2 are zero in Q0.
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Then the Hessian determinant detHg = 12xy − 40y3 − 9y4 = −40y3 in Q0. We define
η(y3) = −1/10 so that η(detHg) = 4 = µ0(g) and η = 0 on the other basis elements. Finally,
the Gram matrix is an anti-diagonal matrix with η(y3) = −1/10 along the anti-diagonal.

Hence, µA1

0 (g) = 2h.

7.3. Rank 4. By the results of Section 6, ν(f) = 4 can be divided into four cases: (i) Γ(f)
is the line with vertices (2, 0) to (0, 5)); (iia) Γ(f) is a line from (3, 0) to (0, 3) with no
internal vertices; (iib) Γ(f) is a line from (3, 0) to (0, 3) with internal vertices; and (iii) Γ(f)
has two or three edges.

Case (i). As Γ(f) has vertices (2, 0) and (0, 5), we can assume

f = a2,0x
2 + a0,5y

5 +
∑
i,j

3≤i+j≤5

ai,jx
iyj

where a0,3 = a0,4 = a1,2 = 0 and a2,0, a0,5 ̸= 0. We obtain

• 1, y, y2, y3, is a k-basis of Q0(∇f).
• x is a k-multiple of y3

• α = 0 in Q0(∇f), for all other α ∈ S.

A direct calculation of detHf using these results, gives, detHf = 40a2,0a0,5y
3 ̸= 0, when

char k ̸= 2, 5. We then define η by η(y3) = a, where a = 1/(10a2,0a0,5) and η(z) = 0 on all
other basis elements z. Then η(detHf ) = 4, the Milnor rank.

The Gram matrix is then the antidiagonal matrix
0 0 0 a
0 0 a 0
0 a 0 0
a 0 0 0


and µA1

0 (f) = 2h by Corollary 2.3.

Case (iia). By assumption on Γ(f), we can assume f has the form

f = a3,0x
3 + a0,3y

3 +
∑
i,j

4≤i+j≤5

aijx
iyj

where a30, a03 ̸= 0. We obtain

• 1, x, y, xy is a k-basis of Q0(∇f).
• α = 0 in Q0(∇f), for all other α ∈ S.

A direct calculation of detHf using these results, gives, detHf = 36a3,0a0,3xy ̸= 0, when
char k ̸= 2, 3. We then define η by η(xy) = a, where a = 1/(9a3,0a0,3), and η = 0 on all
other basis elements. Then η(detHf ) = 4, the Milnor number. The Gram matrix is then
the antidiagonal matrix 

0 0 0 a
0 0 a 0
0 a 0 0
a 0 0 0

 ,
and µA1

0 (f) = 2h by Corollary 2.3.
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Case (iib). Here we assume that a3,0 ̸= 0, a0,3 ̸= 0, and either a2,1 or a1,2 is nonzero. Let

g = a3,0x
3 + a2,1x

2y + a1,2xy
2 + a0,3y

3

the smallest degree terms of f . As we assume f is Newton nondegenerate, g has no repeated
roots and ∆g ̸= 0, where ∆g is the discriminant of g given by

∆g = −27a23,0a
2
0,3 + 18a3,0a2,1a1,2a0,3 − 4a32,1a0,3 − 4a3,0a

3
1,2 + a22,1a

2
1,2

Let A = 6a3,0a1,2 − 2a22,1, B = 6a2,1a0,3 − 2a21,2, and C = a2,1a1,2 − 9a3,0a0,3. Algebraic
manipulation gives:

∆g =

{ −1
12a221

(
a212A

2 +A2B − 2a221AB + 9a230B
2
)

if a21 ̸= 0
−1

12a212

(
a221B

2 +B2A− 2a212AB + 9a203A
2
)

if a12 ̸= 0.

Since either a2,1 or a1,2 is nonzero, we have that A ̸= 0 or B ̸= 0. By symmetry, we can
assume that A ̸= 0. In this case, we obtain

(a) 1, x, y, and y2 is a k-basis of Q0(∇f).
(b) x2 = B

Ay
2 and xy = C

Ay
2

(c) α = 0 in Q0(∇f), for all other α ∈ S.

A direct calculation of detHf using these results gives detHf =
12∆g

A y2 ̸= 0, when char k ̸=
2, 3. We then define η by η(y2) = A

3∆g
, and η = 0 on all other basis elements. Then

η(detHf ) = 4, the Milnor number.
Using the ordering {1, y, x, y2}, the corresponding Gram matrix is

0 0 0 A
3∆g

0 A
3∆g

C
3∆g

0

0 C
3∆g

B
3∆g

0
A

3∆g
0 0 0

 .
The determinant of the middle 2×2 block is 1/3∆g and the corresponding symmetric bilinear
form is equivalent to ⟨A/3∆g, 1/A⟩ ∼= ⟨3∆gA,A⟩. Therefore the entire form decomposes as

h+ ⟨3∆gA,A⟩.

Choosing a2,1 = 0, a1,2 = 2/5, a0,3 = 2/25, a3,0 = 5/6, we obtain A = 2, 3∆gA = −2, and

µA1

0 (f) = 2h. Hence, we also obtain the A1-Milnor numbers previous found in cases (i),
(iia).

Case (iii). We assume that Γ(f) has two or three edges. From Lemmas 6.3 and 6.4, we can
assume that f has the form

(4) f =
∑
i,j

3≤i+j≤5

ai,jx
iyj

where

• a3,0 = 0,
• a2,1 ̸= 0, and
• a1,2 ̸= 0 or a0,3 ̸= 0.

Since it suffices to consider only Newton nondegenerate cases, we can assume D ̸= 0,
where

D = a21,2 − 4a2,1a0,3.
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Row-reduction of the equations coming from (3) (using only the assumptions D ̸= 0 and
those following (4) above), we obtain

• 1, x, y, y2 form a k-basis of Q0(∇f).
• x2 = 1

a22,1
(−3a2,1a0,3 + a21,2)y

2

• xy = − a1,2
2a2,1

y2

• α = 0 in Q0(∇f), for all other α ∈ S.

Applying these results, a direct calculation of detHf shows that it has only three nonzero
terms in Q0(∇f), and they simplify to detHf = −6Dy2 ̸= 0, when char k ̸= 2, 3. We can
then define η by η(y2) = a, where a = − 2

3D , and η = 0 on all other basis elements. Then
η(detHf ) = 4, the Milnor number.

Using the ordering {1, y, x, y2}, the corresponding Gram matrix is the block upper anti-
triangular 4× 4 matrix: ∗ a

B
a 0


with

B = a

[
1 −b/2

−b/2 b2 − 3
a0,3
a2,1

]
, where b =

a1,2
a2,1

.

Using Lemma 2.2, µA1

0 (f) = h + qB , where qB is the form corresponding to B. Since the
form qB represents a, qB ∼= ⟨a, detBa ⟩. As detB/a simplifies to − 1

2a22,1
,

qB ∼= ⟨− 2

3D
,− 1

2a22,1
⟩ ∼= ⟨−2,−6D⟩

Thus
µA1

(f) ∼= h+ ⟨−2,−6D⟩
By choosing the parameters a2,1 = 1/24, a1,2 = 0, and a0,3 = c, we have −6D = c. Hence,
the symmetric bilinear forms that arise as A1-Milnor numbers of rank 4 in case (iii) are
exactly those of the form h+ ⟨−2, c⟩ for any nonzero c.

In conclusion, we have found that the A1-Milnor numbers µA1

0 (f) that can occur are:

Cases (i), (iia): 2h Case (iib): h+ ⟨3∆gA,A⟩ Case (iii): h+ ⟨−2, c⟩
By relaxing the requirement a3,0 ̸= 0 in case (iib) and letting a3,0 = 0, a2,1 = 1, a1,2 = 0,
and a0,3 = c/24, the form in case (iib) becomes h + ⟨−2, c⟩. Moreover, letting c = 2, this
gives 2h. Thus, all A1-Milnor numbers of rank 4 are of the form h + ⟨3∆gA,A⟩, where we
recall that A = 6a3,0a1,2 − 2a22,1, ∆g, and the coefficients ai,j satisfy the conditions in Case
(iib) or the relaxed conditions specified above.

7.4. Rank 6. We now assume ν(f) = 6. From Section 6, there are three cases: (i) Γ(f)
has one edge and consists of (2, 0), (0, 7); (ii) Γ(f) has one edge and consists of (3, 0), (0, 4);
and (iii) Γ(f) has two or three edges.

Case (i). As Γ(f) has one edge with vertices (2, 0), (0, 7), we can assume f has the form∑
i,j

2≤i+j≤7

ai,jx
iyj

where a1,1 = a1,2 = a1,3 = a0,2 = a0,3 = a0,4 = a0,5 = a0,6 = 0 and a2,0 and a0,7 are
nonzero. Row-reduction of equations as described in (3) in Subsection 7.2 shows
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• 1, y, y2, y3, y4, y5 form a basis of Q0(∇f).
• x is a k-linear combination of y4, y5

• xy is a k-multiple of y5

• α = 0 in Q0(∇f), for all other α ∈ S.

A calculation of detHf in Q0(∇f), using these results to reduce terms, shows

detHf = 84a2,0a0,7y
5,

which is non-zero if char k ̸= 2, 3, 7. We then define η : Q0(∇f) → k by η(y5) = a, where
a = 1/14a2,0a0,7, and η = 0 on all other basis elements. Then η(detHf ) = 6, the Milnor
number. Direct calculation of the Gram matrix gives the antidiagonal 6× 6 matrix

0 · · · 0 a
... . .

.
a 0

0 a . .
. ...

a 0 · · · 0

 ,

By Corollary 2.3, this shows µA1

0 (f) = 3h.

Case (ii). As Γ(f) has one edge with vertices (3, 0), (0, 4), we can assume f has the form∑
i,j

3≤i+j≤7

ai,jx
iyj

where a1,2 = a0,3 = a2,1 = 0 and a3,0, a0,4 are nonzero. Row-reduction of the equations in
(3) in Subsection 7.2 shows

• 1, y, x, y2, xy, xy2 form a k-basis of Q0(∇f).
• y3 = − 3a1,3

4a0,4
xy2

• x2 = − 1
3a3,0

(2a2,2xy
2 + a1,3y

3) =
(
− 2a2,2

3a3,0
+

a21,3
4a3,0a0,4

)
xy2.

• α = 0 in Q0(∇f), for all other α ∈ S.

A direct computation of the Hessian determinant detHf in Q0(∇f) gives

detHf = 72a3,0a0,4xy
2,

which is non-zero if char k ̸= 2, 3. We then define η by η(xy2) = a, with a = 1/12a3,0a0,4,
and η = 0 on all other basis elements. Then η(detHf ) = 6, the Milnor number.

The Gram matrix is then the upper-triangular anti-diagonal matrix
∗ · · · ∗ a
... . .

.
. .
.

0

∗ . .
.

. .
. ...

a 0 · · · 0

 ,

with a along the anti-diagonal. By Corollary 2.3, µA1

0 (f) = 3h.
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Case (iii). We assume that Γ(f) has two or three edges. By Lemmas 6.3 and 6.4, we can
assume that f has the form

(5)
∑
i,j

3≤i+j≤7

ai,jx
iyj

where

• a1,2 = a0,3 = a0,4 = 0,
• a2,1 ̸= 0, and
• a1,3 ̸= 0 or a0,5 ̸= 0.

Since it suffices to consider only Newton nondegenerate cases, we can assume D ̸= 0,
where

D = a21,3 − 4a2,1a0,5.

Row-reduction of these equations (3) (and only using the assumptions following (5) and
D ̸= 0), we obtain

• 1, x, y, y2, y3, y4 form a k-basis of Q0(∇f).
• x2 = 1

2a22,1
(−10a2,1a0,5 + 3a21,3)y

4

• xy is a k-linear combination of y3, y4

• xy2 = − a1,3
2a2,1

y4

• α = 0 in Q0(∇f), for all other α ∈ S.

Using these results, a direct calculation of detHf shows that it has only three nonzero
terms in Q0(∇f), and they simplify to detHf = −15Dy4, which is non-zero if char k ̸= 3, 5.
We can then define η by η(y4) = a, where a = −2/5D, and η = 0 on all other basis elements.
Then η(detHf ) = 6, the Milnor number.

Using the ordering {1, y, y2, x, y3, y4}, the corresponding Gram matrix is the block upper
anti-triangular matrix: 

∗ a
a

B
a

a 0


with

B = a

 1
−a1,3
2a2,1

−a1,3
2a2,1

3a21,3−10a0,5a2,1

2a22,1

 .
Using Lemma 2.2, µA1

0 (f) = 2h + qB , where qB is the form corresponding to B. Since the
form qB represents a, qB ∼= ⟨a, detBa ⟩. As detB/a simplifies to − 1

2a22,1
,

qB ∼= ⟨− 2

5D
,− 1

2a22,1
⟩ ∼= ⟨−2,−10D⟩

Thus

µA1

(f) ∼= 2h+ ⟨−2,−10D⟩
By choosing the parameters a1,3 = 0, a2,1 = 1/40, and a0,5 = c, we have −10D = c. Hence,
the symmetric bilinear forms that arise as A1-Milnor numbers of rank 6 in case (iii) are
exactly those of the form 2h+ ⟨−2, c⟩ for any nonzero c. As this form is 3h when c = 2, the
forms from the previous cases (i ) and (ii) appear in this case as well.
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7.5. Rank 8. We now assume ν(f) = 8. From Section 6, there are three cases: (i) Γ(f) has
one edge with vertices (2, 0), (0, 9); (ii) Γ(f) has one edge with vertices (3, 0), (0, 5); and
(iii) Γ(f) has two or three edges.

Case (i). When m = 2 and n = 9, we can use Lemma 4.2 to delete all terms with total
degree at least 10 and consider polynomials of the form

f =
∑
i,j

2≤i+j≤9

ai,jx
iyj

where a1,1 = a1,2 = a1,3 = a1,4 = a0,2 = a0,3 = a0,4 = a0,5 = a0,6 = a0,7 = a0,8 = 0 and a2,0
and a0,9 are nonzero. The above approach yields that

• 1, y, y2, y3, y4, y5, y6, y7 form a k-basis of Q0(∇f).
• x is a linear combination of y5, y6, y7

• xy is a linear combination of y6, y7

• xy2 is a multiple of y7.
• α = 0 in Q0(∇f), for all other α ∈ S.

We now use this to compute the Hessian determinant detHf in Q0(∇f). Using the results
above, in the direct calculation of detHf , it is 144a2,0a0,9y

7, which is non-zero if char k ̸=
2, 3. We can then define η by η(y7) = a, where a = 1/(18a2,0a0,9), and η = 0 on all other
basis elements. Then η(detHf ) = 8, the Milnor number.

The Gram matrix is then the antidiagonal matrix
0 · · · 0 a
... . .

.
a 0

0 a . .
. ...

a 0 · · · 0

 ,
By Corollary 2.3, this means the A1-Milnor number is 4h.

Case (ii). When m = 3 and n = 5, we can use Lemma 4.2 and assume

f =
∑
i,j

3≤i+j≤9

ai,jx
iyj

where a0,3 = a0,4 = a1,2 = a1,3 = a2,1 = 0 and a3,0 and a0,5 are nonzero. The above
approach yields that

• 1, y, x, y2, xy, y3, xy2, xy3 form a k-basis of Q0(∇f).
• x2y = − 2a2,2

3a3,0
xy3

• y4 = 1
5a05

(
4a22,2
3a3,0

− 4a14

)
xy3

• x2 = − 2a2,2
3a3,0

xy2 + 1
3a3,0

(
2a3,1a2,2
a3,0

− 2a2,3 +
a1,4
5a0,5

(
− 4a22,2

3a3,0
+ 4a1,4

))
xy3.

• α = 0 in Q0(∇f), for all other α ∈ S.

We now use this to compute the Hessian determinant detHf in Q0(∇f). Using these
results, a direct calculation of detHf gives detHf = 120a3,0a0,5xy

3, which is non-zero if
char k ̸= 2, 3, 5. We can then define η by η(xy3) = a, where a = 1/(15a3,0a0,5), and η = 0
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on all other basis elements. Then η(detHf ) = 8, the Milnor number. The Gram matrix is
then of the form 

∗ · · · ∗ a

. .
.

∗ a 0
... ∗ . .

.
0 0

∗ a 0 . .
. ...

a 0 0 · · · 0


,

By Corollary 2.3, this means the A1-Milnor number is 4h.

Case (iii). In this case, we assume that µ0(f) = 8 and Γ(f) has two or three edges. By
Lemmas 6.3 and 6.4, we can assume that f has the form

(6) f =
∑
i,j

3≤i+j≤9

ai,jx
iyj

where

• a1,2 = a1,3 = a0,3 = a0,4 = a0,5 = a0,6 = 0,
• a2,1 ̸= 0, and
• a1,4 ̸= 0 or a0,7 ̸= 0.

Since it suffices to consider only Newton nondegenerate cases, we can assume D ̸= 0,
where

D = a21,4 − 4a2,1a0,7.

Row reduction of equations in (3) yields

• 1, x, y, y2, y3, y4, y5, y6 form a k-basis of Q0(∇f).
• x2 = 1

a22,1
(−7a2,1a0,7 + 2a21,4)y

6

• xy is a linear combination of y4, y5, y6

• xy2 = − a1,4
2a2,1

y5 +
a2,2a1,4−a2,1a1,5

2a22,1
y6

• xy3 = − a1,4
2a2,1

y6

• α = 0 in Q0(∇f), for all other α ∈ S.

We now use this to compute the Hessian determinant detHf in Q0(∇f). Using the results
above, In the direct calculation of detHf , the only three nonzero terms in detHf are:

−4a22,1x
2 + 8a2,1a1,4xy

3 + (84a2,1a0,7 − 16a214)y
6,

which simplifies to −28Dy6, which is nonzero if char k ̸= 2, 7. We can then define η by
η(y6) = a, where a = − 2

7D , and η = 0 on all other basis elements. Then η(detHf ) = 8, the
Milnor number.

Using the ordering {1, y, y2, y3, x, y4, y5, y6}, the Gram matrix is then the block upper
anti-triangular matrix: 

a
∗ a

a
B

a
a 0

a





CHARACTERIZATION OF A1-MILNOR NUMBERS OF SMALL RANK 29

with

B = a

(
1 −b/2

−b/2 2b2 − 7
a0,7
a2,1

)
, and b =

a1,4
a2,1

Using Lemma 2.2, the corresponding symmetric bilinear form is 3h ⊕ qB , where qB is the
form corresponding to B. Since qB represents a, qB ∼= ⟨a, detBa ⟩. As detB/a simplifies to

− 1
2a22,1

,

qB ∼=
〈
− 2

7D
,− 1

2a22,1

〉
∼= ⟨−2,−14D⟩

Thus

µA1

(f) ∼= 3h+ ⟨−2,−14D⟩

By choosing the parameters a1,4 = 0, a2,1 = 1/56, and a0,7 = c, we have −14D = c. Hence,
the symmetric bilinear forms that arise as A1-Milnor numbers of rank 8 in case (iii) are
exactly those of the form 3h + ⟨−2, c⟩ for any nonzero c. When c = 2, ⟨−2, c⟩ = h, and

µA1

(f) = 4h, recovering the form found in cases (i) and (ii) for rank 8.
Thus the Grothendieck–Witt classes of rank at most 8 that arise as A1-Milnor numbers

of isolated singularities of plane curves are exactly those given in Table 1.

8. Over specific fields

Thus far, what have done works over any field of characteristic not 2, 3, 5, or 7. We
now explore what happens for specific fields. We have seen in Theorem 3.3 that every EKL
form of rank at most 7 arises as an A1-Milnor number of a polynomial in three variables
f : A3 → A1. When k = C, the only form of rank r is r⟨1⟩, and we can see from Example 3.1
that every form of rank at most 7 over C arises as a A1-Milnor number from a single-variable
function f : A1 → A1.

In this section, we show that the situation is different over R and Q by proving the
following result.

Theorem 8.1. Let k be Q or R.
(a) There exist EKL forms of ranks 4, 6, and 8 of morphisms A2 → A2 that do not

arise as A1-Milnor numbers of morphisms A2 → A.
(b) There exist A1-Milnor numbers of ranks 4, 6, and 8 of morphisms An → A that do

not arise as A1-Milnor numbers of morphisms A2 → A.

By [17, Lemma 8], every form mh+⟨a, b⟩ arises as an EKL form of a morphism A2 → A2.
By Example 3.2, every form mh + ⟨a, b⟩ arises as an A1-Milnor number of a morphism
A3 → A1. Thus all forms with signatures (3, 1), (4, 2), or (5, 3) arise in these ways. We
will prove Theorem 8.1 by showing in Propositions 8.2, 8.3, and 8.4 that forms with these
signatures cannot arise as A1-Milnor numbers of morphisms A2 → A1.

8.1. Milnor numbers over R. Let k = R. Over R, a symmetric bilinear form q is uniquely
determined by its rank and signature.

Proposition 8.2. Let q be a rank 4 symmetric bilinear form over R. Then q can be an
A1-Milnor number µ0(f) for some f ∈ R[x, y] with an isolated singularity at zero if and only
if q has signature (2, 2) or (1, 3).
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Proof. (⇒) In Section 7.2, we show (see Table 1) that the A1-Milnor numbers of rank 4 are of
the form h+⟨3∆gA,A⟩. We now show that the form ⟨3∆gA,A⟩, where A = 6a3,0a1,2−2a22,1
and

∆g = −27a23,0a
2
0,3 + (18a3,0a2,1a1,2 − 4a32,1)a0,3 − 4a3,0a

3
1,2 + a22,1a

2
1,2

cannot have signature (2, 0). Suppose it did. Then both A and ∆g would need to be positive.
Now consider ∆g as a quadratic polynomial in a0,3. Its discriminant is

−16(3a3,0a1,2 − a22,1)
3 = −2A3 < 0,

as A > 0. Since the leading coefficient of a20,3 in ∆g is −27a23,0, the quadratic ∆g is negative
for all choices of a0,3. Hence, it is not possible for A, ∆g to both be positive. Thus the
A1-Milnor number cannot have signature (3, 1).

(⇐) We have seen in cases (i) and (iia) of Section 7.3, that the form 3h with signature
(2, 2) can occur. Letting f(x, y) = x3 + x2y − 2

27y
3, then µ0(f) has signature (1, 3) (here

A < 0 and ∆g > 0). □

Proposition 8.3. Let q be a rank 6 symmetric bilinear form over R. Then q can be an
A1-Milnor number µ0(f) for some f ∈ R[x, y] with an isolated singularity at zero if and only
if q has signature (3, 3) or (2, 4).

Proof. It was shown in Section 7.4 that µ0(f) = 2h+ ⟨−2, c⟩, where c can be chosen to be
any non-zero real number. Thus, µ0(f) has signature (3, 3) or (2, 4), and both can occur. □

Proposition 8.4. Let q be a rank 8 symmetric bilinear form over R. Then q can be a
A1-Milnor number µ0(f) for some f ∈ R[x, y] with an isolated singularity at zero if and
only if q has signature (4, 4) or (3, 5).

Proof. It was shown in Section 7.5 that µ0(f) = 3h+ ⟨−2, c⟩, where c can be chosen to be
any non-zero real number. Thus, µ0(f) has signature (4, 4) or (3, 5), and both can occur. □

Proof of Theorem 8.1. By Propositions 8.2, 8.3, and 8.4, forms with signature (3, 1), (4, 2),
or (5, 3) cannot arise as A1-Milnor numbers. As [17, Lemma 8] shows that there are EKL
forms with these signatures, the theorem follows. □

For the rest of this section, we work over Q and for right now only consider rank 6. In
this case, we know that the A1-Milnor number has the form 2h+ ⟨−2, c⟩, and any c ∈ Q is
possible. We now classify which symmetric bilinear forms over Q are of the form ⟨−2, c⟩.

8.2. A1-Milnor numbers of rank 6 and 8 over Q coming from bivariate polyno-
mials. Let f ∈ Q[x, y] have an isolated singularity at zero with µ0(f) = 6. In Section 7.4,
we showed µ0(f) = 2h+ ⟨−2, c⟩, where c ∈ Q can be chosen to be any non-zero number. We
now determine the symmetric bilinear forms over Q of rank 6 that are A1-Milnor numbers
by determining which rank 2 symmetric bilinear forms are equivalent to ⟨−2, c⟩.

We refer to Serre [19] for the background on symmetric bilinear forms over Q and the
p-adic fields Qp (note that Serre’s treatment is in terms of quadratic forms, which are
equivalent to symmetric bilinear forms over k when char k ̸= 2. We recall that a symmetric
bilinear form q of rank 2 over Q is determined by its discriminant dq ∈ Q∗/(Q∗)2, its
signature (2 − s, s), and the Hasse–Witt invariants εp = ±1, for each prime p, including
p = ∞.

(1) dq ≡ (−1)s in R/(R)2,
(2) ε∞ = (−1)s(s−2)/2,
(3) If dq ≡ −1 in Q∗

p/(Q∗
p)

2, then εp = 1.
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(4) εp = −1, for only a finite number of p
(5)

∏
p εp = 1.

Conversely, if these conditions are met, there is a symmetric bilinear form of rank 2 over Q
with the invariants {dq, (2− s, s), εp}.

We now characterize the symmetric bilinear forms of the form ⟨a, b⟩ that are equivalent
to ⟨−2, c⟩. For a prime p and a non-zero integer n, we define vp(n) to be the exact power
of the prime p dividing n. We extend the domain of vp to rational numbers a/b by defining
vp(a/b) = vp(a)− vp(b).

Theorem 8.5. The symmetric bilinear forms q = ⟨−2, c⟩, for c ∈ Q∗ are the rank 2
symmetric bilinear forms determined by the invariants (dq, (2− s, s), εp} satisfying

(1) s = 1 or 2
(2) dq ≡ (−1)s and ε∞ ≡ −dq in R∗/(R∗)2,

(3) If p is an odd prime and p ≡ 5, 7 (mod 8), then εp = (−1)vp(dq).
(4) If p is an odd prime and p ≡ 1, 3 (mod 8), then εp = 1.
(5) ε2 =

∏
p̸=2 εp (including p = ∞)

Proof. (⇒) Assuming q = ⟨−2, c⟩, we will prove that the conditions (1) through (5) are
satisfied. First, dq = −2c. If c > 0, then the signature of q is (1, 1), s = 1, and dq ≡ (−1)s

in R∗/(R∗)2. Also ε∞ = (−2, c)∞ = 1 ≡ −dq. If c < 0, s = 2 and dq ≡ 1 = (−1)s. Also,
ε∞ = (−2, c) = −1 ≡ −d. Hence (1) and (2) hold true. Also (5) is true for any form q.

Now let p be an odd prime let
(

−2
p

)
be the Legendre symbol. By Quadratic reciprocity, it

equals 1, if p ≡ 1, 3 (mod 8) and is −1 if p ≡ 5, 7 (mod 8). By [19, Chap. III, Thm 1],

εp =

(
−2

p

)vp(c)
=

(
−2

p

)vp(dq)
,

proving statements (3) and (4).
(⇐) Conversely, we now assume that conditions (1)-(5) are satisfied. For clarity, let

d, s′, ε′p denote a set of values satisfying these conditions. Let c = −2d and define q = ⟨−2, c⟩.
We will show that dq ≡ d in Q∗/(Q∗)2, sq = s′, and εq,p = ε′p for all p.

We note that dq = 4d ≡ d in Q∗/(Q∗)2. If d > 0, then s′ = 2. Now q has signature (0, 2)
with sq = s′. Since dq = 4d > 0, and dq ≡ (−1)sq . And εq,∞ = (−2,−2dq) = −1 ≡ −dq ≡
−d ≡ ε′∞. When dq < 0, we have the same results with s = 1.

For an odd prime p, since vp(dq) = vp(4d) = vp(d), the same argument as above shows
that εq,p = ε′p. Finally, as

εq,2 =
∏
p̸=2

εq,p =
∏
p̸=2

ε′p = ε′2

we see that the invariants of the form q have the specified properties. □

As the invariants of the forms nh+ ⟨−2, c⟩ are determined by those of ⟨−2, c⟩, we obtain:

Corollary 8.6. The symmetric bilinear forms q = 2h+ ⟨−2, c⟩, for c ∈ Q∗ are the rank 6
symmetric bilinear forms with the invariants (dq, (2− s, s), εp} satisfying

(1) s = 3 or 4
(2) ε∞ ≡ dq ≡ (−1)s in R∗/(R∗)2,

(3) If p is an odd prime, p ≡ 5, 7 (mod 8), then εp = (−1)vp(dq).
(4) If p is an odd prime, p ≡ 1, 3 (mod 8), then εp = 1.
(5) ε2 =

∏
p̸=2 εp (including p = ∞)
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Corollary 8.7. The symmetric bilinear forms q = 3h+ ⟨−2, c⟩, for c ∈ Q∗ are the rank 8
symmetric bilinear forms with the invariants (dq, (2− s, s), εp} satisfying

(1) s = 4 or 5 and ε∞ = 1;
(2) dq ≡ (−1)s in R∗/(R∗)2,

(3) If p is an odd prime, p ≡ 5, 7 (mod 8), then εp = (−1)vp(dq).
(4) If p is an odd prime, p ≡ 1, 3 (mod 8), then εp = 1.
(5) ε2 =

∏
p̸=2 εp (including p = ∞)

9. A dimension reduction technique

In this section, we present a reduction technique for A1-Milnor numbers of the type that
has been used for local A1-Brouwer degrees. First, we recall the following result of this type
from Quick–Strand–Wilson [17].

Theorem 9.1 ([17, Theorem 15]). Suppose F : An → An is a map with an isolated zero at
0 and suppose that the rank of Q0(F ) is N ≥ 1. If the ideal (F1, . . . , Fn) is not contained in
(x1, . . . , xn) ⊆ k[x1, . . . , xn], then we can eliminate a variable in the description of Q0(F ).
That is, there is a map G : An−1 → An−1 with isolated zero at 0 and Q0(G) ∼= Q0(F ).
Furthermore, the EKL form of F and G differ only by multiplication by a unit.

In [17], Quick, Strand, and Wilson first found all possible shapes of the EKL forms of
rank up to seven in two variables. Then they applied the above Theorem 9.1 to conclude that
increasing the number of variables does not produce any new forms. As they point out in
[17, Remark 16], the method of such reduction was introduced by McKean [13, Lemma 5.7]
when calculating the local A1-Brouwer degree of the intersection of two plane curves. In
both [13] and [17], the reduction shows the existence of a function with fewer variables and
an isomorphic local ring, such that the A1-Brouwer degree is equal up to multiplication by a
unit. By reducing the number of variables needed, these theorems can often help to reduce
the complexity of computations.

When the problem is to compute an A1-Milnor number instead of an EKL form, one
lets F = ∇f , where f : An → A1. Now the Fj are the partial derivatives fxj , which are
no longer independent of each other, as in the EKL situation. As a result, the situation
becomes much more subtle. Nevertheless, we are able to prove in Theorem 9.6 a reduction
theorem for A1-Milnor numbers.

Definition 9.2. Let R be a local ring with maximal ideal m. If f ∈ m, the order of f is
defined to be the largest integer k such that f ∈ mk. By convention, the zero polynomial
has order ∞.

On the way to proving Theorem 9.6, we begin with a lemma that shows that one can
apply a change of variables without changing the A1-Milnor number. The main purpose of
this lemma is to transform f such that it does not have the term xn in degree 1. Applying
this lemma once will increase the total degree of the coefficient of xn. By repeating this
procedure, the degree gets large enough and vanishes in Q0(∇f).

Lemma 9.3. Let n, s ≥ 2 be integers, let a be a nonzero element of k, and let αi ∈
k[x1, . . . , xn−1] be polynomials for i ∈ {0, 1, . . . , s}. If α1 ̸= 0 and α1(0) = α2(0) = 0, then
there exist polynomials βi ∈ k[x1, . . . , xn−1] for i ∈ {0, 1, . . . , s} with β1(0) = β2(0) = 0,

Q0

(
∇

(
ax2n +

s∑
i=0

αi · xin

))
= Q0

(
∇

(
ax2n +

s∑
i=0

βi · xin

))
,
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µA1

0

(
ax2n +

s∑
i=0

αi · xin

)
= µA1

0

(
ax2n +

s∑
i=0

βi · xin

)
,

and ord(β1) > ord(α1).

Proof. By completing the square, letting xn = Xn − α1

2a , and expanding, we have

ax2n +

s∑
i=0

αi · xin = a
(
xn +

α1

2a

)2
− α2

1

4a2
+ α0 +

s∑
i=2

αi · xin

= aX2
n + α0 −

α2
1

4a2
+

s∑
i=2

αi ·
(
Xn − 1

2
α1

)i
= aX2

n + α0 −
α2
1

4a2
+

s∑
i=2

αi ·
(
−1

2
α1

)i
+

s∑
i=2

iαi ·
(
−1

2
α1

)i−1

Xn

+

s∑
j=2

s∑
i=j

(
i

j

)
αi ·

(
−1

2
α1

)i−j
Xj
n.

This is of the form

aX2
n +

s∑
j=0

βj ·Xj
n

with

βj =



α0 −
α2
1

4a2
+

s∑
i=2

αi ·
(
−1

2
α1

)i
for j = 0,

s∑
i=2

iαi ·
(
−1

2
α1

)i−1

for j = 1,

s∑
i=j

(
i

j

)
αi ·

(
−1

2
α1

)i−j
for j ≥ 2.

Note that α1(0) = 0 implies β1(0) = 0 and that α1(0) = α2(0) = 0 implies β2(0) = 0.
Theorem 5.3 gives that

Q0

(
∇

(
ax2n +

s∑
i=0

αi · xin

))
= Q0

∇

X2
n +

r∑
j=0

βj ·Xj
n


and

µA1

0

(
ax2n +

r∑
i=0

αi · xin

)
= µA1

0

(
aX2

n +

r∑
j=0

βj ·Xj
n

)
.

We now show that ord(β1) > ord(α1). By definition, β1 is the sum of terms αiα
i−1
2 , with

i ≥ 2, and for each i, we will show ord(αiα
i−1
2 ) > ord(α). By the hypothesis on α1, we have

1 ≤ ord(α1) <∞. Since ord(α2) ≥ 1, we have

ord(α2 · α1) = ord(α2) + ord(α1) > ord(α1).

For i ≥ 3, we have ord
(
αi ·αi−1

1

)
≥ ord(αi−1

1 ) > ord(α1). Thus ord(β1) > ord(α1), complet-
ing the proof. □

We illustrate the above with an example.
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Example 9.4. Consider f = (y + x2)2 + x3y + x3y2. This is of the form in Lemma 9.3
with a = 1, α0 = x4, α1 = 2x2 + x3, α2 = x3, and αi = 0 for all i ≥ 3. Therefore
we can apply Lemma 9.3 to get another function with the same A1-Milnor number, where

β0 = x4 − (2x2+x3)2

4 + (2x2+x3)2

4 x3, β1 = −(2x2 + x3)x3, β2 = x3, and βi = 0 for all i ≥ 3.
In this particular example, note that the order of β1 is 5, strictly bigger than that of α1.
Moreover, the order β1y is 6. Since dimQ0 = 4, dimQ0 + 2 = 6 and by Lemma 4.2, the
term can be deleted without changing the A1-Milnor number.

In general by repeatedly applying Lemma 9.3, we can make the order of α1 sufficiently
large that the term α1 · xn can be disregarded by Lemma 4.2, so we can assume α1 = 0 as
it will be done in the next Lemma 9.5.

Lemma 9.5. Let f : An → A be a morphism with isolated singularity at the origin and let
m = (x1, . . . , xn). Assume that (fx1

, . . . , fxn
) ̸⊆ m2. Then there exists a map h : An → A

with isolated singularity at the origin of the form

h = α0 + ax2n +

s∑
i=2

αi · xin,

for a nonzero scalar a and αi ∈ k[x1, . . . , xn−1] with ord(α2) ≥ 1 such that Q0(∇f) ∼=
Q0(∇h) and

µA1

0 (f) = µA1

0 (h).

Proof. Since f has an isolated singularity at the origin, the partial derivatives fx1
, . . . , fxn

have no constant terms. Since (fx1
, . . . , fxn

) ̸⊆ m2, one of fx1
, . . . , fxn

has a nonzero linear
term and thus f contains at least one nonzero monomial with degree 2. These terms are
of the form ax2i or axixj . If f does not contain a non-zero monomial ax2i for some i, then
it must have a nonzero term axixj for some i ̸= j. In this case, by using a change of basis
and replacing xj by xi + xj , we have a polynomial f ′ with a nonzero monomial ax2i . By

Theorem 5.3, µA1

0 (f) = µA1

0 (f ′). By replacing f by f ′, we can assume that f contains the
non-zero term ax2i for some i and a ̸= 0. By renumbering the variables, we can assume f
contains the term ax2n, with a ̸= 0. Thus, we may assume

(7) f = α0 + α1 · xn + ax2n +

s∑
i=2

αi · xin

for some polynomials αi ∈ k[x1, . . . , xn−1], with α1(0) = α2(0) = 0, and some s ≥ 2. If
n = 1, then α1 is a constant and α1 = 0, and we let h = f to prove the lemma. The same
holds if n > 1 and α1 = 0. If n > 1 and α1 ̸= 0, the polynomial f satisfies the hypotheses of
Lemma 9.3. By repeatedly applying Lemma 9.3, we can find a polynomial h ∈ k[x1, . . . , xn]
such that

(8) h = β0 + β1 · xn + ax2n +

s∑
i=2

βi · xin,

with βi ∈ k[x1, . . . , xn−1], ord(β1) ≥ µ0(f) + 1, β2(0) = 0, and µA1

0 (f) = µA1

0 (h). Then
as ord(β1xn) ≥ µ0(h) + 2, Lemma 4.2 allows us to delete the β1xn term from h without
changing its A1-Milnor number. Thus, we can assume that h = β0 + ax2n +

∑s
i=2 βi · xin,

with ord(β2) ≥ 1, which proves the lemma. □
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Theorem 9.6. Let f : An → A be a morphism with isolated singularity at the origin and let
m = (x1, . . . , xn). Assume that (fx1 , . . . , fxn) ̸⊆ m2. Then there exists a map g : An−1 → A
with isolated singularity at the origin and a unit ε such that Q0(∇f) ∼= Q0(∇g) and

µA1

0 (f) = ⟨ε⟩ · µA1

0 (g).

Proof. By Lemma 9.5, we can assume that f has the form

β0 + ax2n +

s∑
i=2

βi · xin,

with a ̸= 0, βi ∈ k[x1, . . . , xn−1] and ord(β2) ≥ 1. Let g = β0. Differentiating, we have

fxj = gxj +

r∑
i=2

∂βi
∂xj

xin for j ∈ {1, . . . , n− 1}

fxn
= 2axn +

r∑
i=2

iβi · xi−1
n = xn

(
2a+

r∑
i=2

iβi · xi−2
n

)
.

As ideals in the local ring ring k[x1, . . . , xn]m, we have

(fx1 , . . . , fxn) =

(
fx1 , . . . , fxn−1 , xn

(
2a+

r∑
i=2

iβi · xi−2
n

))
= (fx1

, . . . , fxn−1
, xn)

= (gx1
, . . . , gxn−1

, xn),

where the second equality holds because 2a+
∑r
i=2 iβi ·xi−2

n is a unit in k[x1, . . . , xn]m. The
last equality holds because fxi is generated by gxi and xn and so is gxi by fxi and xn. We
then have

Q0(∇f) = k[x1, . . . , xn]/(fx1
, . . . , fxn

)m

= k[x1, . . . , xn]/
(
gx1

, . . . , gxn−1
, xn
)
m

= k[x1, . . . , xn−1]/
(
gx1

, . . . , gxn−1

)
m′

= Q0(∇g),

where m′ is the ideal (x1, . . . , xn−1) in k[x1, . . . , xn−1], and we identify elements in both
Q0(∇f) and Q0(∇g) as equal. If detHf is the Hessian matrix of f and Hg is the Hessian
matrix of g, we have that

Hf =

(
Hg 0
0 2a

)
,

where the zeros occur because xn is 0 in Q0(∇f). Therefore we have det Hf = 2adet(Hg)
under the isomorphism.

We define ηg so that ηg(det Hg) = µ0(g) and define ηf (y) =
1
2aηg(y) for any y ∈ Q0(∇f).

Then
ηf (det Hf ) =

1
2aηg(det Hf ) = 1

2aηg(2a det Hg)
= ηg(det Hg) = µ0(g) = µ0(f).

Now we can compute the A1-Milnor number of f and g using ηf and ηg respectively on the

same set of basis elements. Each entry in the Gram matrix of µA1

0 (f) is exactly 1
2a the entry

of µA1

0 (g) at the same position. Thus µA1

0 (f) = ⟨ 1
2a ⟩ · µ

A1

0 (g). As an is a unit, the theorem
is proved. □
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Example 9.7. Continuing Example 9.4, where f = (y + x2)2 + x3y + x3y2, Theorem 9.6
produces

g = x4 − (2x2 + x3)2

4
+

(2x2 + x3)2

4
x3.

Since a = 1 here, Theorem 9.6 gives that µA1

0 (f) = ⟨ 12 ⟩ · µ
A1

0 (g).
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